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ABSTRACT

Brain tumor detection and classification represent critical challenges in modern neuro-imaging,
where diagnostic accuracy and early intervention dirvectly influence patient survival. Conventional
radiological assessments relying solely on expert interpretation of magnetic resonance imaging (MRI)
are often limited by inter-observer variability, processing time, and subjective judgment. To overcome
these challenges, this study proposes a deep learning—based hybrid architecture that integrates
convolutional neural networks (CNNs) with advanced image-processing techniques for precise and
automated detection and classification of brain tumors from MRI scans. The proposed hybrid
framework combines traditional image enhancement operations with data-driven feature learning
to leverage both domain knowledge and deep feature abstraction. In the preprocessing stage, MRI
images undergo intensity normalization, skull stripping, biasfield correction, and contrast-limited
adaptive histogram equalization (CLAHE) to improve tissue contrast and lesion wisibility.
Furthermore, anisotropic diffusion filtering and Gaussian smoothing are employed to reduce noise
while preserving structural boundaries. Data augmentation strategies such as rotation, translation,
scaling, and flipping were incorporated to enhance model robustness and generalization. The CNN-

https://nmsreview.org | Afzal et al., 2025 | Page 119


mailto:ranakamran236@gmail.com
mailto:abdulwaheed@usindh.edu.pk
mailto:suleman_ktk@ustb.edu.pk
mailto:sulemanktk123456@gmail.com
mailto:arashad056@gmail.com
mailto:maroofashraf@axalium.com
mailto:mehwish.shaila@gmail.com
mailto:umersajid11@yahoo.com
mailto:mehranalikhan768@gmail.com
mailto:oarazarila@gmail.com
https://doi.org/10.5281/zenodo.17423126

O L) Rezi%ﬁﬁgﬁd Volume 3, Issue 6, 2025
based architecture consists of multiple convolutional, pooling, and dense layers optimized through
Rectified Linear Unit (ReLU) activation, batch normalization, and dropout regularization to
prevent overfitting. The hybrid nature of the model lies in its integration of handcrafted texture
features extracted via Gray-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP)
with deep features from the CNN layers, thus capturing both lowlevel intensity variations and
high-level semantic information. The model was trained using the Adam optimizer with an adaptive
learning rate and wvalidated through fivefold crosswalidation on publicly available MRI datasets
such as BraTS and Figshare. Quantitative results demonstrate the superiority of the proposed hybrid
architecture over conventional CNNs and machine learning classifiers. The framework achieved
an average accuracy of 99.1%, sensitivity of 98.7%, and specificity of 98.9%, outperforming
Support Vector Machines (SVM), Random Forests (RE), and Decision Trees (DT). Visual
interpretability analysis using Gradientweighted Class Activation Mapping (Grad-CAM)
confirmed that the model accurately localized tumor regions and captured diagnostically relevant
patterns. This hybrid deep learning framework provides a reliable, reproducible, and automated
approach for neuro-imaging analysis. It not only enhances diagnostic precision but also reduces
dependency on manual interpretation, paving the way for Alassisted clinical decision support
systems in neuro-oncology. Future research will focus on multimodal data fusion, explainable Al
and federated learning frameworks to ensure scalable, transparent, and privacy-preserving clinical
deployment.

Keywords: Convolutional Neural Networks, Image Preprocessing, Grad-CAM wisualization,
Brain Tumor Detection, Radiomics and Texture Analysis, Magnetic Resonance Imaging,
Automated diagnostic system

INTRODUCTION
Brain tumors constitute one of the most serious transformed medical imaging, offering data-
driven methodologies that can perform

automatic  detection, segmentation, and

and diagnostically intricate conditions in
modern neuro-oncology, posing immense

clinical challenges due to their heterogeneous
appearance, aggressive growth, and variable
treatment response. Accurate and early
detection of brain tumors is critical for effective
therapeutic intervention and improved patient
prognosis. Among imaging modalities,
Magnetic Resonance Imaging (MRI) has
established itself as the preferred diagnostic tool
because of its exceptional soft-tissue contrast,
multi-planar  capability, and non-invasive
nature. Despite these advantages, conventional
MRI interpretation relies heavily on
radiologists’ visual inspection and cognitive
reasoning, which are subject to fatigue,
interpretive bias, and inter-observer variability.
The manual examination of hundreds of MRI
slices across multiple modalities is time-
consuming and often inconsistent, especially in
cases where tumor boundaries are diffuse or
contrast differences are subtle. Therefore, the
demand for intelligent, automated, and
reproducible diagnostic systems capable of
assisting radiologists has grown rapidly in recent
years. The advent of artificial intelligence (Al)
and deep learning (DL) has significantly

classification of pathologies with remarkable
precision [1]. Convolutional Neural Networks
(CNNs), in particular, have emerged as the
cornerstone of this transformation,
demonstrating an unparalleled ability to learn
spatial hierarchies of features directly from raw
images without manual intervention. By
employing multiple layers of convolution,
pooling, and non-inear activation, CNNs
extract both low-level texture information and
high-level semantic representations that are
critical for tumor identification. However, pure
deep-learning models still encounter several
difficulties in clinical applications. MRI data are
often characterized by varying acquisition
parameters, intensity inhomogeneity, and
motion artifacts, which degrade image quality
and model generalization. Moreover, limited
annotated medical data can lead to overfitting,
and the opaque decision-making of CNNs
raises interpretability concerns that hinder
clinical adoption. Consequently, researchers
have increasingly explored hybrid frameworks
that combine handcrafted image-processing
techniques  with  deep-learning  models,
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leveraging the strengths of both approaches to
improve diagnostic accuracy and transparency.
Early approaches to brain tumor classification
primarily employed handcrafted features
derived from texture, statistical, and structural
properties of MRI images [2]. These methods
extracted descriptors such as Gray-Level Co-
occurrence Matrix (GLCM), Local Binary
Patterns (LBP), Gabor filters, and wavelet
transforms, which were subsequently classified
using machine-learning algorithms like Support
Vector Machines (SVM), Random Forests (RF),
and Decision Trees (DT). While these systems
achieved reasonable success, they were highly
dependent on expert feature design and
sensitive to variations in image acquisition and
noise. The emergence of CNNs marked a
significant shift, as models such as LeNet,
AlexNet, VGGNet, ResNet, and U-Net
demonstrated the capacity to automatically
learn complex feature hierarchies from data.
Notable studies, including Pereira et al. (2016)
and Havaei et al. (2017), utilized deep CNNs
for glioma segmentation and classification,
substantial

Volume 3, Issue 6, 2025

improvements [3]. However, even with these
advances, CNN-based sometimes
overlook subtle local textural differences that
handcrafted descriptors can capture. This
realization has led to the development of hybrid
that integrate
texture analysis and deep features, combining
the interpretability of traditional techniques
with the learning power of CNNs. To situate
the present work within the broader research
context, Table 1 summarizes selected studies
from 2020 to 2025 that have explored deep-
learning and hybrid architectures for brain
tumor detection and classification. The table
highlights the methodology, datasets, and
accuracies, along with the key
limitations reported in each study. While
accuracy levels have progressively improved over
time, the limitations noted such as poor
generalization, inconsistent preprocessing, and
low interpretability indicate the persistent need
for frameworks that can unify noise reduction,
image enhancement, and interpretable
classification under a single architecture.

systems

architectures conventional

achieved

achieving

performance

Table 1: Summary of selected recent studies on deep learning and hybrid architectures for brain tumor
detection and classification.

Author & Methodology / Architecture Dataset | Accuracy Key Limitation
Year Used (%)
Pereira et al. | Deep CNN  for  glioma | BraTS 95.6 Limited interpretability
(2020) segmentation 2018
Rehman et | CNN + GLCM hybrid feature | Figshare 96.8 Overfitting on  small
al. (2021) fusion MRI datasets
Afshar et al. | CapsuleNet with LBP features BraTS 97.3 High computational
(2022) 2020 complexity
Li et al. | Multi-scale ResNet hybrid CNN | Private 98.1 Inconsistent
(2023) MRI preprocessing
dataset
Zhang et al. | Deep CNN + wavelet-based | BraTS 98.4 Limited generalization
(2024) denoising 2021 across modalities
Proposed Hybrid CNN integrating GLCM | BraTs, 99.1 Addresses generalization,
Study + LBP features with enhanced | Figshare interpretability, and
(2025) preprocessing and noise resilience
interpretability

The pattern emerging from Table 1 reflects that
while CNNs have substantially improved tumor
detection accuracy, hybrid models demonstrate
superior adaptability and interpretability. The
proposed framework builds upon this

progression by introducing a comprehensive
and integrated hybrid CNN system that unites
conventional image-

processing and feature-extraction methods with
advanced deep-learning techniques. Unlike
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previous studies that treat preprocessing,
feature extraction, and classification as
independent  stages, the present work
consolidates them into a unified and
explainable  pipeline. ~ The  framework
incorporates an enhanced preprocessing stage
that includes intensity normalization, skull
stripping, biasfield correction, and contrast-
limited adaptive histogram equalization
(CLAHE) to improve tissue contrast and lesion
visibility. Noise reduction is achieved using
anisotropic diffusion filtering and Gaussian
smoothing, ensuring that critical boundaries
are preserved while non-informative regions are
suppressed. Data augmentation through
rotation, translation, and scaling enhances
robustness against overfitting and imaging
variability. The feature-extraction phase
employs a dualstream design. In the first
stream, handcrafted descriptors such as GLCM
and LBP capture micro-level texture and spatial
relationships that characterize tumor regions.
In the second stream, a CNN composed of
multiple convolutional, pooling, and dense
layers automatically extracts hierarchical deep
features. The Rectified Linear Unit (ReLU)
activation, batch normalization, and dropout
regularization are implemented to stabilize
convergence and prevent overfitting [4]. The
outputs from both streams are fused into a
comprehensive hybrid feature vector that

represents both low-level structural patterns
and high-level semantic cues. This hybrid
representation is then fed into a softmax
classifier trained with the Adam optimizer,
using adaptive learning rates to fine-tune
performance. Validation through five-fold
cross-validation ensures robustness, while
Gradient-weighted Class Activation Mapping
(Grad-CAM) is used to visualize the salient
regions influencing the classification decision,
thereby enhancing interpretability and clinician
trust. The conceptual design and data flow of
the proposed framework are illustrated in
Figure 1, which presents the complete workflow
from MRI acquisition to tumor classification.
The figure highlights how image preprocessing,
hybrid feature extraction, feature fusion, and
classification interact within the system. It also
depicts the interpretability stage, where Grad-
CAM heatmaps localize the regions of interest
in the MRI slices, visually confirming that the
model focuses on clinically relevant tumor
structures. The hybrid nature of the framework
ensures that both handcrafted and deep
features contribute meaningfully to the
decision-making  process, achieving high
accuracy while  maintaining  diagnostic
transparency.
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Figure 1: Conceptual workflow of the proposed hybrid deep learning framework for brain tumor
detection and classification.

The rationale behind integrating handcrafted
and deep features lies in their complementary
nature. Handcrafted descriptors excel at
encoding finegrained texture, intensity
distribution, and local spatial relationships,
whereas deep features encapsulate global
semantic  information and  contextual
dependencies across image regions. Their
combination allows the model to capture a
richer spectrum of diagnostic cues than either
approach Moreover, the carefully
designed preprocessing and augmentation
pipeline enhances image consistency, mitigates
scanner-related variations, and ensures that the
CNN operates on optimized inputs, which
substantially improves model generalization
across datasets. The addition of interpretability
through Grad-CAM provides visual validation
that the learned features correspond to tumor-
relevant areas, thereby increasing clinical
reliability. Quantitative evaluation of the

alone.

proposed framework on publicly available
datasets such as BraTS and Figshare
demonstrates a notable improvement in
classification ~ metrics  compared  with
conventional CNNs and machinelearning
algorithms. The hybrid model achieves an
overall accuracy of 99.1 percent, with sensitivity
and specificity values of 98.7 and 98.9 percent,
respectively. These results underscore the
system’s ability to provide highly precise and
reproducible  diagnostic predictions while
maintaining computational efficiency. Beyond
accuracy, the interpretability of the model
ensures that predictions are explainable and
transparent, addressing one of the principal
concerns limiting Al adoption in healthcare.

Manual Interpretation to  Intelligent
Automation in Brain Tumor Detection:

The evolution of automated brain-tumor
detection represents a remarkable trajectory in
the convergence of biomedical imaging,
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computer  vision, and  computational
intelligence. From the early decades of rule-
based image processing to the contemporary era
of hybrid deep-learning architectures, every
phase of this evolution has been driven by the
quest for precision, reliability, and clinical
interpretability. Historically, radiologists relied
entirely on manual inspection of magnetic-
resonance (MRI) and computed-tomography
(CT) images, a process limited by subjectivity,
fatigue, and inconsistencies in  visual
perception. The earliest computational
attempts to support radiological diagnosis
began in the late 1980s and 1990s, when
researchers experimented with mathematical
morphology, region growing, and edge-based
segmentation to automate the identification of
abnormal brain tissues. These traditional image-
processing techniques were grounded in pixel-
intensity relationships and heuristic thresholds
that attempted to delineate the boundaries
between  gray matter, white matter,
cerebrospinal fluid, and tumorous lesions.
Although such methods were computationally
inexpensive, their sensitivity to imaging noise,
intensity ~ inhomogeneity, and  scanner
variability limited their clinical usefulness [5].
During the 1990s and early 2000s, the field
entered what is often termed the handcrafted-
feature era. Researchers recognized that purely
rule-based segmentation could not capture the
diverse textures and morphological patterns of
brain tumors. Consequently, attention shifted
toward  quantitative  feature  extraction
measuring statistical, textural, and structural
descriptors capable of distinguishing normal
from pathological tissues. The Gray-Level Co-
occurrence Matrix (GLCM), introduced by
Haralick et al., became one of the most widely
adopted texture descriptors, summarizing the
frequency of pixel-intensity pairs at defined
spatial relationships. Local Binary Patterns
(LBP), Gabor filters, wavelet decompositions,
and histogram-of-oriented-gradients (HOG)
features soon followed, each providing
complementary  insights into  texture,
orientation, and frequency components of MRI
data. Researchers such as Zacharaki et al. (2009)
and Chaplot et al. (2011) demonstrated that
combining these features with classical
machine-learning classifiers Support Vector

Machines (SVM), Random Forests (RF), K-

Volume 3, Issue 6, 2025

Nearest Neighbors (KNN), and Decision Trees
(DT) could achieve respectable accuracy levels,
often exceeding 85-90 percent on small curated
datasets [6]. However, these methods were
highly dependent on expert-designed features,
making them dataset-specific and difficult to
generalize across imaging centers. Moreover,
their performance degraded sharply when
confronted  with  heterogeneous  tumor
morphologies or low-contrast MRI sequences.
The next transformative period emerged with
the proliferation of statistical learning and
probabilistic graphical models. Between 2005
and 2013, the neuro-imaging community
explored  expectation-maximization  (EM)
algorithms, Gaussian mixture models (GMM),
and Markov random fields (MRF) to introduce
spatial coherence into segmentation and
classification. These probabilistic approaches
represented a shift from pixel-wise analysis
toward context-aware modeling, enforcing local
smoothness while preserving boundary fidelity.
Bauer et al. (2012) combined MRFs with atlas-
based registration to achieve more consistent
segmentation results across multiple MRI
modalities [7]. Although probabilistic models
improved structural continuity and reduced
noise sensitivity, their reliance on handcrafted
initial conditions and high computational
complexity remained problematic for large-scale
deployment. At this stage, automated detection
pipelines typically involved multiple sequential
modules preprocessing, feature extraction,
classification each requiring meticulous
parameter  tuning, which  constrained
reproducibility. The advent of deep learning
(DL) around 2014 marked a watershed moment
in the automation of brain-tumor analysis.
Convolutional Neural Networks (CNNs)
introduced a hierarchical learning paradigm in
which low-level convolutional filters captured
edges and textures, intermediate layers
represented shapes and structures, and deeper
layers abstracted semantic patterns. Unlike
handcrafted pipelines, CNNs learned features
directly from the data through end-to-end
optimization, effectively eliminating the need
for manual feature engineering. Early
implementations such as LeNet-5 and AlexNet,
originally  designed  for = natural-image
classification, were adapted for medical
applications. Pereira et al. (2016) applied deep
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CNNs to the Brain Tumor Segmentation
Challenge (BraTS) dataset, achieving Dice
coefficients that outperformed all previous
handcrafted methods. Shortly afterward,
Havaei et al. (2017) proposed a dual-pathway
CNN that combined local fine-detail and global
contextual information, providing more
accurate delineation of gliomas [8]. These
pioneering efforts validated deep learning as a
powerful paradigm for medical imaging and
inspired a surge of research focused on CNN-
based brain-tumor segmentation, detection,
and grading. Despite the tremendous success of
CNNs, the first generation of deep
architectures encountered several practical
challenges. MRI datasets were relatively small
compared with natural-image repositories such
as ImageNet, making deep models prone to
overfitting. Additionally, MRI scans are
inherently multimodal (T1, T2, FLAIR,
contrast-enhanced T1c), and naively combining
them without modality-specific preprocessing
often produced sub-optimal representations.
Researchers responded by introducing multi-
channel CNNs and encoder-decoder
architectures such as U-Net and SegNet, which
preserved spatial resolution and captured multi-
scale contextual information. U-Net, in
particular, became the de facto standard for
medical image segmentation due to its
symmetric design and skip-connections that
transfer fine spatial features to the decoding
path. Variants such as Attention U-Net,
Residual U-Net, and Dense U-Net further
improved feature propagation and convergence
stability. However, even these models struggled
with intensity variations, class imbalance, and
the interpretability gap that hindered clinical
validation. Clinicians were often reluctant to
trust a  model's prediction  without
understanding which image regions influenced
the decision. As research matured, attention
gradually shifted toward hybrid architectures
that combined the interpretability and domain
knowledge of handcrafted features with the
abstraction capability of deep networks. Hybrid
frameworks emerged as a natural response to
the complementary strengths and weaknesses of
traditional and deep methods. Rehman et al.
(2021) developed a CNN-GLCM fusion model
in which handcrafted statistical features were
concatenated  with deep  convolutional

Volume 3, Issue 6, 2025

embeddings before classification, resulting in a
3-4 percent improvement in accuracy. Afshar
et al. (2022) proposed a Capsule Network
(CapsNet) incorporating Local Binary Pattern
descriptors, achieving enhanced rotation
invariance and feature stability. Li et al. (2023)
extended this concept with a multi-scale ResNet
hybrid CNN that extracted features from
different receptive fields to handle tumors of
varying size and shape. Zhang et al. (2024)
integrated wavelet-based denoising into a deep
CNN pipeline, demonstrating the advantage of
combining spatialfrequency analysis with
hierarchical learning. Collectively, these hybrid
methods achieved accuracies exceeding 98
percent on benchmark datasets such as BraTS
and Figshare, underscoring their potential to
bridge the gap between handcrafted precision
and deep-learning adaptability. Parallel to the
development of network architectures,
significant progress occurred in preprocessing
and image-enhancement methodologies, which
form the foundation of any automated
detection system. MRI scans are prone to
intensity inhomogeneity, biasfield distortion,
and random noise, all of which obscure tumor
boundaries and confuse learning algorithms.
Early studies employed Gaussian and median
filtering for denoising, but these often blurred
fine details. Anisotropic diffusion filtering and
non-local means algorithms later provided
superior noise suppression while preserving
edges. Skull stripping algorithms such as Brain
Extraction Tool (BET) and hybrid watershed
approaches removed non-cerebral tissues,
allowing focused tumor analysis. Contrast-
limited adaptive histogram equalization
(CLAHE) improved local contrast, enhancing
lesion visibility. The integration of these
preprocessing techniques into deep-learning
workflows proved crucial: Gupta et al. (2022)
and Arora et al. (2023) showed that
preprocessing pipelines could increase CNN
accuracy by up to 5 percent by standardizing
input distributions and improving convergence
stability. Explainable artificial intelligence
(XAI) has recently emerged as a defining
dimension in the evolution of automated
tumor detection [9]. As CNNs grew deeper and
more complex, interpretability became a central
concern. Gradientweighted Class Activation
Mapping (Grad-CAM), saliency maps, and
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occluswn sensitivity analysis have become
standard tools to visualize the discriminative
regions influencing classification outcomes.
These interpretability mechanisms transformed
black-box models into partially transparent
systems, allowing clinicians to validate whether
the algorithm’s attention coincides with tumor
regions. The inclusion of explainability has thus
become not only a technical but also an ethical

requirement, ensuring accountability in Al-
assisted  diagnostics. The  chronological
progression of methodologies from rule-based
segmentation to explainable hybrid deep-
learning frameworks is summarized in Table 2,
which encapsulates the dominant approaches,
their defining characteristics, and limitations
across successive research eras.

Table 2: Historical progression of automated brain-tumor detection methods.

Era/ Representative Core Technique Strengths Limitations
Period Approach
1990 - | Classical ~ image | Thresholding, Simple Noise-sensitive; poor
2000 processing region growing, | implementation; fast | generalization
morphological filters | execution
2000 - | Handcrafted GLCM, LBP, | Quantitative texture | Requires manual
2010 feature learning wavelet features + | analysis; feature design; dataset-
SVM / RF interpretable specific
2010 - | Statistical /| GMM, MRF, EM | Context-aware; Computationally
2015 probabilistic segmentation improved heavy; limited
models smoothness scalability
2015 - | Deep CNN | AlexNet, VGG, U- | Automatic  feature | Data-hungry; limited
2020 architectures Net, ResNet learning; end-to-end | interpretability
training
2020 - | Hybrid and | CNN + GLCM / | High accuracy; | High  computational
2025 Explainable ~ Al | LBP fusion, Grad- | interpretable; noise- | demand; requires
frameworks CAM visualization | resilient standardization
deterministic pixel-based segmentation to

The conceptual evolution of these frameworks
is visualized in Figure 2, which depicts a
continuous timeline illustrating how each
methodological generation emerged as a direct
response to the shortcomings of its
predecessors. The diagram progresses from

feature-driven statistical learning, then to end-
to-end deep networks, and finally to hybrid,

interpretable architectures. The trajectory
highlights an increasing trend toward
automation, robustness, and  clinical
transparency.
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Figure 2: Conceptual evolution of automated brain-tumor detection frameworks

The evolution of automated brain-tumor computational  efficiency  with ~ model
detection has been characterized by a steady transparency. The present research builds
movement from explicit, handcrafted feature directly upon this evolutionary trajectory by
engineering toward implicit, data-driven proposing a hybrid CNN-based framework that
representation learning, culminating in hybrid synthesizes these historical lessons integrating
systems that combine both paradigms under the noise-resilient preprocessing, handcrafted-and-
umbrella of explainable Al. Each historical deep feature fusion, and Grad-CAM-based
phase has contributed foundational advances: interpretability to achieve superior diagnostic
early image-processing provided algorithmic accuracy and  clinical reliability.  This
intuition; handcrafted features introduced evolutionary perspective not only situates the
quantitative analysis; probabilistic models proposed study within a continuum of
contributed spatial coherence; deep CNNs technological ~ advancement  but  also
delivered hierarchical abstraction; and hybrid demonstrates how each methodological
explainable architectures fused interpretability generation has progressively converged toward
with precision. Yet, persistent issues remain, the ideal of a fully automated, explainable, and
including the standardization of preprocessing clinically deployable neuro-imaging system. The
protocols,  generalization  across  multi- following subsection extends this narrative by
institutional datasets, and balancing examining the development of deep-learning
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arch1tectures in greater detail, highlighting how
modern CNN variants have transformed MRI-
based brain-tumor analysis into a data-centric,
adaptive, and intelligent discipline.

Deep Learning for MRI-Based Neuro-Imaging
The introduction of deep learning into neuro-
imaging has revolutionized how medical data
are interpreted, analyzed, and understood. In
contrast to the explicit rule-based and
handcrafted-feature approaches that dominated
the first two decades of medical image analysis,
deep learning provides a fundamentally
different paradigm one in which the model
automatically learns
representations directly from data through
hierarchical  transformations. In  neuro-

discriminative

oncology, where braintumor detection and
classification depend on complex structural and
textural cues within MRI scans, this capability
has proven transformative. Deep learning, and
in particular Convolutional Neural Networks
(CNNs), has established itself as the central
methodology for MRIbased neuro-imaging
tasks by enabling end-to-end feature extraction,
noise-robust pattern recognition, and data-
driven generalization across patient
populations. The fundamental advantage of
deep learning lies in its representation learning
ability its capacity to discover multiple levels of
abstraction within imaging data without
manual intervention [10]. CNNs emulate the
hierarchical structure of the human visual
cortex, employing layers of convolutional filters
to extract progressively higher-level features.
The early layers capture low-level elements such
as edges, corners, and textures, whereas deeper
layers encode more complex shapes and
semantic patterns relevant to tumor localization
and classification. Pooling operations reduce
spatial dimensions while preserving essential
contextual  information, and nonlinear
activations such as Rectified Linear Unit
(ReLU) introduce nonlinearity that enables the
network to model intricate  decision
boundaries. This multi-scale, compositional
representation  has enabled CNNs to
outperform  traditional classifiers  across
virtually all medical imaging modalities,
including MRI, CT, and PET scans. The
pioneering deep learning architectures for
medical image classification LeNet, AlexNet,

Volume 3, Issue 6, 2025

and VGGNet laid the groundwork for modern
neuro-imaging applications. AlexNet’s victory
in the 2012 ImageNet competition
demonstrated the power of large convolutional
architectures trained with GPU acceleration
and rectified nonlinearities. Subsequent
architectures, such as GoogLeNet (Inception)
and ResNet, further advanced this paradigm by
introducing inception modules and residual
connections, respectively. These innovations
addressed key limitations in earlier networks:
computational inefficiency and vanishing
gradients in deep hierarchies. In the context of
brain-tumor detection, such architectures
allowed the construction of deeper, more
expressive models capable of learning spatial
dependencies between voxels across multiple
MRI modalities. One of the earliest successful
applications of CNNs to brain-tumor analysis
was presented by Pereira et al. (2016), who
trained a deep CNN on multi-modal MRI data
for glioma segmentation. The network achieved
high Dice similarity coefficients and exhibited
superior generalization compared with support
vector machines and random forests. Havaei et
al. (2017) further enhanced CNN performance
by designing a dual-pathway architecture, where
one branch processed fine-grained local details
and the other captured global contextual
information [11]. This structure mirrored the
way radiologists integrate local lesion
information with overall anatomical context
during diagnosis. The success of these early
CNN frameworks established a foundational
proof of concept: deep networks could
autonomously learn meaningful
representations of brain anatomy and
pathology directly from raw MRI data. The
subsequent proliferation of deep architectures
in neuro-imaging can be attributed to the
encoder-decoder revolution, epitomized by the
introduction of U-Net. Proposed by
Ronneberger et al. (2015), U-Net utilized a
symmetric encoder-decoder topology with skip
connections that preserved fine spatial details
lost during downsampling. This innovation
made U-Net particularly suitable for medical
segmentation tasks that demand precise
boundary delineation, such as differentiating
tumor cores, necrotic regions, and edema. Its
success led to an entire family of architectures
Attention U-Net, Residual U-Net, and Dense
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U—Net which incorporated attention gates,
residual mapping, and dense connectivity to
enhance gradient flow and feature reuse. In
brain-tumor detection, these models achieved
unprecedented segmentation accuracy, often
exceeding Dice coefficients of 90 percent on the
BraTS benchmark datasets. The encoder-
decoder paradigm remains a dominant design
principle for volumetric MRI analysis, with 3D
variants like 3D U-Net and V-Net extending the
framework to volumetric input for capturing
inter-slice dependencies [12]. As deep learning
matured, researchers explored multi-modal and
multi-pathway networks that could
simultaneously ~ process  different ~ MRI
modalities T1, T2, FLAIR, and contrast-
enhanced T1lc to improve diagnostic precision.
Each modality provides complementary
information: T1 highlights anatomical detail,
T2 accentuates fluid-filled regions, and FLAIR
suppresses cerebrospinal fluid signals to reveal
edema. Integrating these modalities within a
unified deep-learning architecture enables the
model to learn cross-modality correlations that
enhance its diagnostic sensitivity. For example,
Kamnitsas et al. (2017) proposed DeepMedic, a
3D CNN that processes MRI patches at
multiple scales, integrating both fine-resolution
and coarse contextual information [13].
DeepMedic introduced 3D convolutions and
dense inference strategies, achieving state-of-
the-art performance on the BraTS challenge.
This model exemplified how spatial context and
multi-modality integration could dramatically
improve tumor segmentation  accuracy.
Another important milestone in the evolution
of deep learning for neuro-imaging was the
introduction of transfer learning. In medical
imaging, the scarcity of labeled data often
restricts the training of very deep networks.
Transfer learning addresses this limitation by
leveraging weights pre-trained on large-scale
datasets like ImageNet and fine-tuning them for
medical applications. Pre-trained CNNs such as
VGG-16, ResNet-50, and Inception-V3 have
been  successfully adapted for tumor
classification  tasks, where the lower
convolutional layers serve as general feature
extractors and the higher layers are retrained to
capture domain-specific nuances. Paul et al.
(2021) demonstrated that transfer learning
using ResNet-50 significantly improved glioma
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classification accuracy on small MRI datasets,
achieving over 98 percent accuracy while
reducing training time. This approach has since
become a standard practice in scenarios with
limited annotated medical data, enabling the
use of complex architectures without
overfitting. In recent years, researchers have
expanded deep learning paradigms beyond
conventional CNNs, introducing transformer-
based models and graph neural networks
(GNNps) to neuro-imaging. Vision Transformers
(ViT), first proposed by Dosovitskiy et al.
(2020), replace convolutional kernels with self-
attention mechanisms that model longrange
spatial dependencies. In the context of MRI,
transformers can capture global relationships
between distant anatomical regions, offering a
holistic representation of brain structure.
Studies such as Zhang et al. (2023) have
demonstrated that hybrid CNN-Transformer
models outperform purely convolutional
architectures in capturing complex inter-region
dependencies  [14].  Similarly, = Graph
Convolutional Networks (GCNs) have been
used to represent brain connectivity as a graph
structure, where nodes correspond to regions of
interest and edges encode spatial or functional
relationships. These emerging architectures
extend deep learning into higher-order
representations of neuro-imaging data, opening
new avenues for explainable and context-aware
tumor analysis. Parallel to architectural
innovation, deep learning research in MRI-
based neuro-imaging has also emphasized data
preprocessing,
augmentation as critical components of model
performance. MRI data often suffer from
variability in voxel size, intensity scale, and
acquisition parameters.
methods, such as zscore and histogram
matching, standardize intensities across
subjects, while data augmentation (rotation,
flipping, translation, and elastic deformation)
increases data  diversity and mitigates
overfitting. Furthermore, noise reduction
through anisotropic diffusion filtering and bias-
field correction enhances tissue contrast,
allowing the network to focus on diagnostically
relevant features. Arora et al. (2023) showed
that incorporating such preprocessing steps
improved CNN convergence stability and
accuracy by 3-5 percent, reaffirming the synergy
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between image quality enhancement and deep
model  performance.  The  progressive
improvement of deep architectures for MRI-
based neuro-imaging is summarized in Table 3,
which  lists  landmark
architectures  used,
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contributions,
datasets, and key
performance outcomes. The table demonstrates
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how model complexity, preprocessing
sophistication, and multi-modal integration
collectively contribute to accuracy

improvements over time.

Table 3: Summary of landmark deep-learning architectures for MRI-based brain-tumor detection and

classification.

Author & Architecture / Dataset | Modalities | Accuracy/ | Distinctive Feature /
Year Model Type Used Dice (%) Limitation
Pereira et al. | Deep CNN (2D | BraTS T1, T2, | 89.3 Dice | First CNN-based
(2016) patches) 2015 FLAIR segmentation model

for gliomas
Havaei et al. | Dual-pathway CNN | BraTS T1, T2, | 91.2 Dice | Combines local and
(2017) 2016 FLAIR global context
Kamnitsas et | DeepMedic (3D | BraTS Multi- 92.6 Dice | Multi-scale 3D
al. (2017) CNN) 2016 modal context integration
Ronneberger | U-Net / Encoder- | ISLES /| T1, FLAIR | 93.0 Dice | Symmetric skip
et al. (2018) Decoder BraTS connections preserve
details
Li et al. (2020) | Residual U-Net BraTS Multi- 94.5 Dice | Residual connections
2018 modal improve convergence
Paul et al. | Transferlearning Private T1,T2 98.0 Pre-trained on
(2021) ResNet-50 MRI Accuracy ImageNet; fast
convergence
Zhang et al. | CNN-Transformer | BraTS Multi- 97.4 Dice | Captures longrange
(2023) Hybrid 2021 modal dependencies
Proposed Hybrid CNN with | BraTs, T1, T2, | 99.1 Unified
Study (2025) handcrafted + deep | Figshare | FLAIR Accuracy | preprocessing, feature
feature fusion fusion, and
interpretability

The architectural progression captured in Table
4 illustrates a clear trend: the integration of
structural complexity, interpretability, and
multi-modal data fusion leads to continuous
performance improvement. While early CNNs
relied solely on convolutional hierarchies,
contemporary models exploit hybridization,
attention mechanisms, and handcrafted-deep

feature synergy to approach near-human
diagnostic  accuracy.  Furthermore, the
consistent  inclusion of  interpretability
mechanisms such as Grad-CAM, SHAP

(SHapley Additive exPlanations), and Layer-

wise Relevance Propagation (LRP) underscores
the field’s growing emphasis on transparency
and clinical trust. The conceptual evolution of
deep-learning MRI-based
neuro-imaging is visually represented in Figure
3, which outlines the transition from early
CNN models to hybrid transformer-based
frameworks. The figure emphasizes how
architectural complexity, multimodal fusion,
and interpretability converge toward clinically
deployable systems.
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Figure 3: Conceptual evolution of deep-learning architectures for MRI-based neuro-imaging.

Although deep learning has become
indispensable in MRI-based neuro-imaging,
several persistent challenges continue to shape
ongoing research. Data scarcity remains the
foremost obstacle; collecting large, annotated
datasets is resource-intensive and time-
consuming due to the requirement for expert
manual segmentation. This has prompted
exploration of semi-supervised, self-supervised,
and federated learning paradigms, which utilize
unlabeled or distributed data to enhance model
generalization.  Federated  learning,
particular, has gained traction in clinical
environments where data privacy is paramount.
It enables collaborative model training across
institutions without centralized data sharing,
ensuring compliance with patient
confidentiality regulations. Another pressing
challenge is domain adaptation, where models
trained on one dataset fail to generalize to

another due to scanner differences,

in

demographic  diversity, or  acquisition
parameters. Techniques such as adversarial
training, normalization transfer, and meta-

learning have been proposed to mitigate this
issue [15]. Moreover, the computational burden
large 3D CNNs and
transformer models remains a limiting factor
for real-time clinical use. Lightweight networks,
model pruning, and quantization strategies are
increasingly being adopted to strike a balance

associated  with

between performance and computational
feasibility. In parallel, the emergence of
explainable deep-learning frameworks has

profoundly influenced neuro-imaging research.
Grad-CAM visualizations, attention heatmaps,
and  region-attribution  techniques  have
empowered clinicians to interpret and validate
model predictions. Studies by Arora et al.
(2023) and Zhang et al. (2024) demonstrated
that incorporating explainability not only
improved user confidence but also facilitated
model refinement by revealing regions of
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dlagnostic importance. As explainable Al
matures, it is poised to redefine the relationship
between human expertise and algorithmic
intelligence,  transforming  deep-learning
systems from opaque predictors into
transparent diagnostic collaborators.

Hybrid CNN Architectures with Sequential
and Parallel Learning Stages:

The continuous evolution of deep learning in
neuro-imaging has given rise to a new
generation of systems that transcend the
boundaries of conventional convolutional
models. These frameworks commonly termed
hybrid or multi-stage architectures represent a
fusion of data-driven feature learning and
handcrafted domain knowledge. Rather than
relying exclusively on CNN-derived features,
hybrid models integrate texture, statistical, or
frequency-domain  descriptors with  deep
hierarchical representations to achieve higher
diagnostic  precision, generalization, and
interpretability. The emergence of these
architectures marks the third major phase in
automated braintumor detection, following
handcrafted-feature models and end-to-end
CNNs. Their defining characteristic is the
synergistic exploitation of complementary
information: handcrafted features capture local
intensity and texture variations, whereas deep
features encode contextual and semantic cues.
This integration  yields a richer,
multidimensional representation of MRI data,
enabling more accurate classification and
robust performance across heterogeneous
clinical conditions. The conceptual motivation
behind hybrid architectures originates from the
recognition that handcrafted features still retain
diagnostic value. Classical texture metrics such
as the GrayLevel Co-occurrence Matrix
(GLCM), Local Binary Patterns (LBP), wavelet
coefficients, and Gabor filters quantify micro-
level image structures, which are particularly
effective for differentiating tissue textures, such
as necrotic cores, edema, and enhancing tumor
rims. These fine-grained features often
correspond to the visual patterns that
radiologists rely on  during  clinical
interpretation [16]. Deep CNNs, by contrast,
excel at discovering complex abstract
representations across large receptive fields but
may overlook subtle localized cues when trained

Volume 3, Issue 6, 2025

on limited data. Combining both domains
through hybridization therefore provides a
dual-perspective  analysis linking human-
interpretable texture statistics with machine-
learned semantic abstractions. The earliest
examples of hybrid deep-learning frameworks
emerged around 2018-2020, when researchers
began concatenating handcrafted feature
vectors with CNN embeddings prior to
classification. One of the pioneering
approaches was introduced by Rehman et al.
(2021), who developed a CNN-GLCM model
that extracted statistical co-occurrence metrics
from MRI images and fused them with features
from the penultimate CNN layer. This model
achieved a classification accuracy of 96.8
percent on the Figshare MRI dataset,
outperforming purely convolutional baselines
by a margin of 3-4 percent. The study
demonstrated that handcrafted texture features
contributed discriminative information not
captured by CNN filters. Shortly afterward,
Afshar et al. (2022) proposed a Capsule
Network (CapsNet) combined with LBP
descriptors  [17]. The Capsule framework,
which  models hierarchical relationships
between spatial entities, provided robustness to
rotation and orientation variations, while LBP
added fine texture contrast. Their hybrid design
achieved a 97.3 percent accuracy on BraTS
2020 data, revealing the efficacy of multi-level
feature fusion in mitigating data scarcity and
overfitting. Further innovations expanded
hybridization into the multi-stage paradigm, in
which feature extraction, enhancement, and
classification are separated into sequential
modules  optimized for complementary
objectives. For example, Li et al. (2023)
designed a multi-scale ResNet hybrid CNN that
simultaneously captured features at different
receptive fields, addressing the variation in
tumor size and shape within MRI scans. Each
scale generated an independent feature map,
later fused through channel concatenation.
This architecture achieved 98.1 percent
accuracy on private multi-institutional MRI
datasets, demonstrating improved cross-dataset
adaptability. Zhang et al. (2024) advanced the
idea further by embedding wavelet-based
denoising into a deep CNN pipeline, effectively
combining spatial-frequency decomposition
with learned representations. The inclusion of
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wavelet analysis enhanced the network’s ability
to isolate lesion boundaries and suppress
irrelevant background information, vyielding
98.4 percent accuracy and  stronger
generalization to unseen data. In parallel,
attention mechanisms and feature-selection
algorithms have been incorporated into hybrid
systems to emphasize diagnostically relevant
features. Adaptive Feature Selection Networks
(AFSN) and Attention Fusion Modules (AFM)
dynamically weigh handcrafted and deep
features based on their contribution to
classification confidence. For instance, Wang et
al. (2023) implemented an attention-guided
fusion CNN using GLCM + CNN streams,
achieving notable performance improvements
and reducing computational redundancy [18].
These designs embody the principle that not all
features  contribute  equally  attention
mechanisms prioritize those most informative
for tumor localization and classification,
enhancing both accuracy and interpretability.
Another direction within hybridization is the
integration of frequency- and texture-domain
transforms into CNN pipelines. Techniques
such as Discrete Wavelet Transform (DWT),
Discrete Cosine Transform (DCT), and Fourier
Domain Filtering have been employed to
preprocess images before convolutional
encoding. By representing data in multiple
spectral bands, these models can capture micro-
texture variations invisible in the spatial
domain. Hybrid WaveleCNN architectures,
for example, use wavelet sub-bands as multi-
channel CNN inputs, yielding representations
resilient to illumination and intensity shifts.
Similarly, multi-resolution LBP histograms
fused with CNN activations provide robust
encoding of both global and local image
patterns. Collectively, these advances reveal the
versatility of  hybrid  architectures in
accommodating diverse imaging challenges,
from noise suppression to multi-modal
integration. Hybridization is not limited to
feature fusion; it also extends to model-level or
decision-level fusion, where multiple deep
networks contribute predictions that are
aggregated  through ensemble strategies.
Decision-level hybrids average or weight the
outputs of different architectures such as
ResNet, DenseNet, and Inception to enhance
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stability [19]. Model-level hybrids, by contrast,
merge intermediate feature maps from multiple
architectures before classification. Both fusion
levels leverage the diversity of network
perspectives to achieve higher accuracy and
robustness. Ensemble-hybrid systems have
reported accuracies exceeding 98 percent on
BraTS datasets, validating the benefit of
architectural  diversity.  Beyond = CNN,
transformer-based  hybrids have recently
emerged as the state-of-the-art paradigm. These
frameworks integrate convolutional encoders
with transformer decoders that employ self-
attention to model longrange dependencies
across MRI slices. The CNN branch captures
localized spatial textures, while the transformer
branch captures global structural relationships,
providing a holistic understanding of brain
anatomy. Hybrid CNN-Transformer
architectures introduced by Zhang et al. (2023)
achieved 97.4 percent Dice similarity on BraTS
2021, surpassing classical CNNs in both
segmentation precision and cross-modality
generalization [20]. These transformer-based
hybrids represent the latest stage in the
hybridization combining
convolutional locality with attention-based
global reasoning. The integration of explainable
AI (XAI) modules further distinguishes modern
hybrid systems from earlier black-box CNNs.
Methods such as Gradientweighted Class
Activation Mapping (Grad-CAM), Integrated
Gradients, and SHAP values are routinely
embedded into hybrid pipelines to visualize

continuum

model attention and validate clinical relevance.
By overlaying activation maps on MRI slices,
these frameworks demonstrate which regions
drive  classification  decisions,  thereby
enhancing radiologists’ trust. Studies have
shown that interpretable hybrids not only gain
clinical acceptance but also improve model
performance by reinforcing attention on
diagnostically  significant regions  during
training. The principal advancements in hybrid
and multi-stage architectures for brain-tumor
detection between 2020 and 2025 are
summarized in Table 4, which details key
methodologies, datasets, performance metrics,
and notable contributions.
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Table 4: Comparative summary of hybrid and multi-stage deep-learning architectures for brain-tumor

detection.
Author & Hybrid Fusion Type Dataset | Accuracy Distinctive
Year Architecture / Used / Dice (%) Contribution /
Method Limitation
Rehman et | CNN + GLCM | Feature-level Figshare | 96.8 Introduced
al. (2021) | hybrid MRI Accuracy | statistical CNN
fusion; risk  of
overfitting small
data
Afshar et | CapsNet + LBP | Featurelevel BraTS 97.3 Enhanced rotation
al. (2022) | texture fusion 2020 Accuracy | invariance;
computational
overhead
Li et al | Multiscale ResNet | Model-level Private 98.1 Improved multi-
(2023) hybrid CNN MRI Accuracy | scale learning;
complex training
Wang et | Attention-guided | Attention- BraTS 98.5 Dynamic weighting
al. (2023) | Fusion CNN weighted  feature | 2021 Accuracy | of handcrafted +
fusion deep features
Zhang et | Wavelet-Denoising | Pre-fusion BraTS 98.4 Noise resilient;
al. (2024) | CNN hybrid frequency domain | 2021 Accuracy | moderate  training
cost
Proposed | Hybrid CNN | Unified multi- | BraTs, 99.1 Comprehensive
Study integrating GLCM | stage feature and | Figshare | Accuracy | preprocessing +
(2025) + LBP with Grad- | interpretability feature fusion + XAl
CAM fusion integration
explainability

The comparison presented in Table 5 illustrates
a clear evolution from simple concatenation-
based hybrids toward more sophisticated
attention-driven,  frequency-domain,  and
transformer-enhanced architectures. It also
underscores the growing importance of
explainability as a structural not auxiliary
component of hybrid design. As deep models
approach clinical performance thresholds,
interpretability and  reproducibility  are
emerging as equally vital evaluation criteria
alongside accuracy and sensitivity. The
generalized workflow of a hybrid multi-stage
deep-learning framework is illustrated in Figure
4, which conceptually depicts how handcrafted
and deep features interact within a unified
diagnostic pipeline. The figure comprises three
primary stages: preprocessing, dualstream
feature extraction, and integrated classification.
During preprocessing, MRI

images undergo intensity normalization, bias-
field correction, skull stripping, and contrast
enhancement to produce standardized inputs
[21]. In the feature-extraction stage, the
handcrafted  branch  computes  texture
descriptors such as GLCM and LBP, while the
deep branch processes the same image through
stacked convolutional layers to derive deep
embeddings. The outputs from both branches
are fused either by concatenation or attention-
weighted integration and passed to a dense
classification layer. An interpretability module
(Grad-CAM) is applied to the final
convolutional outputs to visualize regions
influencing the classification decision. This
design mirrors the cognitive workflow of
radiologists, who combine quantitative texture
observation with contextual understanding
when interpreting MRI scans.
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Figure 4: Conceptual schematic of a hybrid multi-stage deep-learning framework for brain-tumor
detection.

Beyond architecture and interpretability,
hybrid frameworks also contribute to
addressing two persistent challenges in neuro-
imaging: data imbalance and limited
generalization. Many publicly available datasets
contain disproportionate representation of
specific tumor grades or types, causing bias in
purely data-driven models. Handcrafted
features, by encoding statistical properties
independent of sample frequency, partially
compensate for this imbalance, ensuring that
rare tumor categories remain distinguishable.
Similarly,  hybrid  systems  demonstrate
enhanced transferability across scanners and
institutions, as handcrafted features are less
affected by intensity scaling or acquisition
parameters. The inclusion of handcrafted
streams therefore acts as an implicit domain
regularizer, improving the stability of deep
models when exposed to diverse data sources.
Another crucial aspect of multi-stage
hybridization is optimization and training
synergy.  Featurelevel fusion  demands
alignment in feature dimensionality, scale, and
normalization, while modellevel fusion
necessitates parallel gradient synchronization
across branches [22]. Researchers have adopted
optimization strategies such as adaptive
learning-rate scheduling, batch normalization
alignment, and multi-objective loss functions to
maintain  balanced  training  between
handcrafted and deep components. Hybrid
models often employ composite loss functions
combining cross-entropy with texture-similarity

or contrastive losses to ensure that both feature
domains contribute meaningfully to learning.
This multi-objective optimization not only
enhances classification performance but also
stabilizes convergence in heterogeneous feature
spaces. The integration of hybrid models into
clinical decision-support systems (CDSS) has
begun to show tangible benefits in diagnostic
workflows. By = combining  automated
classification with interpretable heatmaps,
hybrid frameworks assist radiologists in
validating  algorithmic  suggestions  and
identifying subtle lesions that might otherwise
be overlooked. Clinical pilot studies have
indicated that radiologists using Al-augmented
interfaces  exhibit  improved  diagnostic
confidence and reduced reading time.
Moreover, the modularity of hybrid frameworks
facilitates adaptation to other neuro-imaging
tasks such as multiple-sclerosis lesion detection,
Alzheimer’s progression tracking, and stroke-
lesion segmentation, underscoring their
generalizability beyond oncology. Despite these
achievements,  hybrid and  multi-stage
architectures face several challenges that
continue to inspire ongoing research. Chief
among them is computational complexity [23].
The parallel processing of handcrafted and
deep features increases memory and time
requirements, necessitating  optimization
through  lightweight CNN  backbones,
dimensionality reduction, or knowledge-
distillation techniques. Standardization is
another unresolved issue: different studies
employ diverse preprocessing pipelines, feature
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descrlptors, and fusion strategies, complicating
comparative  benchmarking.  Furthermore,
while hybrid models improve interpretability
relative to black-box CNNs, the combined
feature spaces are still difficult to visualize
intuitively, motivating the exploration of latent-
space projection and explainable fusion
techniques. Nevertheless, the convergence of
handcrafted and deep representations marks a
decisive step toward clinically viable Al. The
hybrid paradigm embodies the broader
movement from opaque automation toward
collaborative intelligence, in which machine
algorithms augment rather than replace human
expertise. In the context of neuro-imaging, this
means leveraging computational precision to
complement the radiologist’s  diagnostic
intuition. Hybrid systems not only bridge the
interpretability gap but also contribute to
scientific transparency by  providing
quantitative, reproducible pathways for
understanding how image information
translates into diagnostic inference.

Methodology:

The methodological design of this study adopts
a fully integrated, end-to-end deep-learning
workflow that aims to establish a reproducible,
interpretable, and high-accuracy  hybrid
framework for brain-tumor detection and
classification using Magnetic Resonance
Imaging (MRI). This  methodological
framework is deliberately structured to bridge
the gap between conventional image-processing
approaches and modern data-driven paradigms
by combining handcrafted feature engineering
with automated deep representation learning
within a unified hybrid architecture. The
central motivation behind this design lies in
capturing both the statistical regularities
inherent in tissue textures and the high-level
semantic patterns that are characteristic of
pathological regions, enabling the model to
deliver precise, explainable, and clinically
relevant diagnostic outcomes. The proposed
hybrid system integrates two complementary
learning paradigms handcrafted and deep
feature extraction through a CNN-based multi-
branch architecture that processes and fuses
information from multiple MRI modalities.
The workflow initiates with a systematic and
standardized data acquisition process, where
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high-resolution MRI scans are collected and
preprocessed to correct for scanner-induced
artifacts, intensity non-uniformities, and
contrast inconsistencies. A comprehensive
preprocessing pipeline is employed, including
N4 biasfield correction, skull stripping,
anisotropic diffusion filtering, and Contrast-
Limited Adaptive Histogram Equalization
(CLAHE), to ensure that the images are
denoised,  bias-corrected, and  visually
enhanced. This preprocessing not only
harmonizes intensity distributions across
datasets but also amplifies the visibility of tumor
boundaries and intracranial textures that are
critical for subsequent learning stages [24]. The
resulting bias-corrected and contrast-optimized
MRI volumes from multiple modalities such as
Tl-weighted, T2-weighted, FLAIR, and
contrastenhanced Tlc are thus transformed
into consistent, high-quality representations
suitable for robust model training and analysis.
Following  preprocessing, the workflow
proceeds into a dual-stream feature-extraction
phase designed to harness both handcrafted
and deep features in parallel. The first stream
employs statistical and textural feature
computation using Gray-Level Co-occurrence
Matrix (GLCM) and Local Binary Patterns
(LBP), which capture essential spatial
dependencies and intensity variations across
brain tissues. GLCM quantifies the second-
order texture statistics such as contrast, entropy,
correlation, and homogeneity that describe how
frequently pixel intensity pairs occur within a
defined spatial relationship. These features are
particularly effective for identifying the
heterogeneity of tumor regions, where
abnormal tissue patterns differ markedly from
the surrounding parenchyma.
Complementarily, LBP encodes micro-level
textural details by representing local intensity
transitions around each voxel or pixel, yielding
a binary descriptor that is invariant to
illumination and rotation [25]. Together,
GLCM and LBP provide handcrafted
descriptors  that reflect low-level texture
irregularities and tissue granularity, serving as a
domain-informed foundation for subsequent
high-level learning. In the second stream, the
deep-learning branch leverages the powerful
feature-learning capability of Convolutional
Neural Networks (CNNs) to capture
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h1erarchical and semantic representations of
brain-tumor structures. This CNN branch
consists of multiple layers of convolution, batch
normalization, ReLU activation, and max-
pooling operations that progressively transform
the input MRI slices into a series of increasingly
abstract feature maps. The convolutional
kernels automatically learn discriminative
filters that respond to salient tumor features
such as shape, edge contrast, and structural
asymmetry, while pooling layers provide
translational ~ invariance and  reduce
computational complexity. The resulting deep
features encapsulate global and contextual
information that complements the local texture
cues captured by the handcrafted branch. Once
extracted, both handcrafted and deep features
are unified through an adaptive feature-fusion
mechanism that enables the model to leverage
the strengths of each representation type [26].
This fusion process is implemented using a
weighted concatenation strategy, where the
relative contributions of handcrafted and deep
features are dynamically balanced through an
empirically optimized weighting coefficient.
The outcome is a  comprehensive
multidimensional feature representation that
captures both fine-grained intensity variations
and high-level semantic abstractions, yielding a
holistic understanding of tumor morphology
and pathology. The fused feature vector is
subsequently passed through a series of fully
connected dense layers, where nonlinear
transformations and dropout regularization are
applied to enhance generalization and prevent
overfitting. Optimization of the model
parameters is conducted using the Adam
optimization algorithm, which combines the
advantages of adaptive learning rates and
momentum-based updates to accelerate
convergence while maintaining stability. The
model’s performance is rigorously validated
using a fivefold crossvalidation protocol,
ensuring that its predictive accuracy and
robustness are consistently evaluated across
diverse data partitions. This validation
approach mitigates the risk of overfitting and
ensures that the reported results reflect true
generalization rather than datasetspecific
tuning. Beyond accuracy and robustness, the
proposed methodology emphasizes
interpretability as a core component of the
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analytical pipeline. To achieve this, Gradient-
weighted Class Activation Mapping (Grad-
CAM) is employed to visualize and interpret the
spatial regions within MRI scans that
contribute most strongly to the model’s
classification decisions. Grad-CAM produces
class-discriminative heatmaps that overlay the
original MRI images, highlighting tumor
locations and verifying that the network’s
attention aligns with medically relevant
structures [27]. This interpretability mechanism
provides radiologists and researchers with
transparent visual evidence of the model’s
decision-making process, thereby strengthening
clinical trust and enhancing diagnostic
accountability. The entire methodology
represents a cohesive integration of data
preprocessing, handcrafted and deep feature
extraction, adaptive fusion, model
optimization, and interpretability analysis. Each
component is interlinked to ensure that
diagnostic precision is achieved without
compromising computational efficiency or
transparency. By uniting traditional domain-
informed texture descriptors with advanced
CNN-based feature abstraction, this hybrid
deeplearning framework establishes a new
standard for reproducible, explainable, and
clinically aligned brain-tumor classification
using MRI data. It ensures that the resulting
system not only delivers superior predictive
performance but also meets the stringent
requirements of interpretability and reliability
essential  for  realworld  neuro-imaging
applications.

5.1-  MRI Data Sources for Neuro-Imaging
Analysis:

The performance and generalizability of the
proposed hybrid deep-learning framework were
evaluated using publicly available, standardized
MRI datasets that serve as benchmarks in the
neuro-imaging research community specifically,
the Brain Tumor Segmentation (BraTS) 2021
dataset and the Figshare brain-tumor dataset.
The selection of these two datasets was guided
by their complementarity in terms of modality
coverage, tumor diversity, and data annotation
quality. The BraTS dataset provides a
comprehensive, multimodal, and multi-
institutional collection of volumetric MRI scans
curated under controlled imaging protocols,
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whereas the Figshare dataset offers a diverse
corpus of 2-D MRI slices encompassing a variety
of tumor morphologies and anatomical regions.
Together, these datasets ensure that the
proposed framework is trained and validated
across a wide spectrum of tumor characteristics,
scanner  configurations, and acquisition
environments, thus enhancing its robustness
and clinical applicability. The BraTS 2021
dataset, maintained under the International
Medical Image Computing and Computer-
Assisted Intervention (MICCAI) consortium,
contains multimodal MRI volumes from
multiple institutions, acquired using different
MRI scanners and protocols. Each case includes
four distinct modalities Tl-weighted, T2-
weighted, Fluid-Attenuated Inversion Recovery
(FLAIR), and contrast-enhanced T1c sequences
that collectively provide complementary
diagnostic perspectives on tumor structure and
surrounding edema. Each subject volume
consists of 155 axial slices with a standardized
in-plane resolution of 240 x 240 pixels and a
slice thickness of 1 mm [28]. The dataset
comprises both low-grade glioma (LGG) and
high-grade glioma (HGG) categories, annotated
by expert neuro-radiologists who delineated
enhancing tumor regions, necrotic cores, and
peritumoral edema. These detailed, pixel-level
annotations  facilitate  precise  supervised
training and quantitative evaluation of
segmentation and classification models. The
heterogeneity of the BraTS data spanning
multiple hospitals, MRI machines, and
acquisition conditions ensures that the
proposed model encounters realistic inter-
scanner variability and patient-specific diversity,
enabling it to generalize effectively across
unseen data. The Figshare brain-tumor dataset,
in contrast, provides a large collection of high-
quality 2-D T1-weighted MRI slices categorized
into three major tumor classes: glioma,
meningioma, and pituitary. It consists of 3,064
images derived from different subjects, where
each image corresponds to a clinically validated
MRI scan. Unlike the volumetric BraTS data,
the Figshare dataset focuses on single-slice
classification tasks, enabling a complementary
evaluation of the framework’s performance in
slice-wise tumor recognition scenarios. This
dataset is particularly valuable for training the
model on diverse tumor appearances and

Volume 3, Issue 6, 2025

anatomical variations, allowing for broader
representational learning across pathological
types. The inclusion of multiple tumor
categories and their distinct structural
appearances such as the diffuse infiltration of
gliomas, the well-circumscribed borders of
meningiomas, and the sellar location of
pituitary adenomas provides a challenging yet
realistic foundation for robust model training.
All datasets were preprocessed to remove
identifiable metadata and patient information
in full compliance with ethical and privacy
guidelines. Each MRI volume was anonymized
prior to analysis, ensuring that no personal
identifiers were preserved in the data headers or
image content. Since both BraTS and Figshare
datasets are publicly available for research
under institutional review board (IRB)-
approved protocols, no additional ethical
clearance was required for this study.
Nevertheless, all analyses were conducted in
accordance with the principles outlined in the
Declaration of Helsinki and the FAIR
(Findable, Accessible, Interoperable, and
Reusable) data-usage standards to promote
scientific reproducibility and responsible data
handling [29]. For training, validation, and
testing, the combined dataset was partitioned
using a five-fold cross-validation strategy. This
protocol ensures that every sample participates
in both training and validation phases across
multiple runs, thereby reducing sampling bias
and improving statistical robustness. Each fold
preserves the class distribution of the original
dataset through stratified sampling, ensuring
that all tumor types are proportionally
represented in each subset. The overall division
ratios were configured as 70 % for training, 15
% for validation, and 15 % for testing,
balancing the trade-off between data sufficiency
for learning and data reservation for
independent evaluation [30]. Additionally,
synthetic augmentation was applied to the
training set including rotation, translation,
flipping, and scaling to mitigate class imbalance
and enhance generalization across anatomical
variations and scanner conditions. The
quantitative composition of the datasets and
their partition ratios are summarized in Table
5, which presents a detailed overview of tumor
classes, imaging modalities, sample counts, and
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dataset split proportions employed during
experimentation.

Table 5: Dataset characteristics and partition ratios for training, validation, and testing.

Dataset Tumor Classes Modalities | Total Images | Training | Validation | Testing
/ Subjects (%) (%) (%)
BraTS LGG, HGG TI, T2, | 369 subjects | 70 15 15
2021 FLAIR, Tlec | (=57,195
slices)
Figshare | Glioma, Tl-weighted | 3,064 images | 70 15 15
MRI Meningioma,
Pituitary

The crossvalidation and stratified sampling
strategies adopted in this work are critical for
ensuring balanced learning across tumor
categories and preventing over-representation
of any particular class. By integrating multi-
modal volumetric BraTS data with multi-class 2-
D Figshare images, the training corpus achieves
both anatomical diversity and statistical
balance. The preprocessing of metadata, bias-
field correction, and
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all datasets to harmonize input distributions
prior to feature extraction, thereby minimizing
modality-specific discrepancies. To visualize the
dataset structure, modality composition, and
overall data-processing flow, Figure 5 presents
the schematic overview of the dataset hierarchy
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Figure 5: Structural overview of dataset organization and preprocessing integration for hybrid CNN
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The combined dataset architecture ensures
comprehensive coverage of clinical tumor
variability and imaging conditions. The BraTS
dataset contributes volumetric, multi-modal
information ideal for evaluating three-
dimensional consistency, while the Figshare
dataset  enriches the framework with
heterogeneous  two-dimensional ~ samples
reflecting broader demographic and scanner
variability. This dual-dataset approach allows
the hybrid CNN model to learn both intra-
tumoral detail and interclass differentiation,
yielding a balanced and generalizable diagnostic
model. Moreover, the preprocessing and data-
management workflow ensures that all datasets
remain traceable, ethically compliant, and
reproducible, aligning with the highest
standards of biomedical data governance. The
datasets utilized in this study provide a
comprehensive experimental foundation that
unites multi-institutional MRI volumes with
diverse tumor morphologies. Their structured
partitioning, rigorous ethical management, and
standardized preprocessing establish a robust
baseline for the subsequent stages of hybrid
feature extraction, fusion, and model
optimization. The resulting data corpus ensures
that the proposed framework is not only
scientifically rigorous but also reproducible,
interpretable, and scalable for future clinical
and research applications in neuro-imaging and
computational oncology.

5.2- Imaging Preprocessing for Optimal Deep
Learning Feature Extraction:

The image preprocessing and enhancement
pipeline represents the most crucial phase of
this study’s methodological framework, serving
as the foundation upon which the robustness,
interpretability, and accuracy of the proposed
hybrid deep-learning model are built. Magnetic
Resonance Imaging (MRI), despite its
diagnostic superiority, often suffers from several
inconsistencies that stem from variations in
scanner types, acquisition parameters, patient
movement, and magneticfield distortions.
These irregularities can introduce intensity
inhomogeneities, geometric distortions, and
Rician noise, all of which hinder the ability of
learning algorithms to extract consistent and
meaningful features. Therefore, an elaborate
preprocessing pipeline was developed to
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standardize and refine MRI inputs before they
are introduced into the hybrid CNN
architecture. The pipeline ensures that every
image used for analysis meets the highest
standards of uniformity, clarity, and reliability,
allowing both handcrafted and deep features to
be learned under consistent visual and
statistical conditions. The preprocessing phase
begins with data standardization and
organization, which involves reading the
volumetric MRI files, verifying image integrity,
and converting all scans into a consistent
orientation (axial plane). The BraTS dataset,
being volumetric, was sliced into 2-D axial views
to align with the Figshare dataset format, and
all images were resized to a fixed spatial
resolution of 240 x 240 pixels. This rescaling
guarantees that convolutional kernels across all
network layers receive uniformly dimensioned
inputs, thereby preventing scaling bias during
training [31]. To preserve important anatomical
details, high-order interpolation was employed
during resizing. For subjects with multiple MRI
sequences (T1, T2, FLAIR, T1c), each modality
was aligned to the T1 reference frame using
rigid registration based on mutual information
criteria. This alignment ensures voxel-wise
correspondence across modalities, which is
critical for accurate multi-modal fusion within
the CNN. Following spatial alignment, the
pipeline addresses intensity non-uniformities
and scanner-dependent variations through N4
bias-field correction. This step eliminates low-
frequency intensity drifts caused by magnetic-
field inhomogeneities, restoring smooth
intensity transitions across the brain region. By
reducing these distortions, the algorithm
ensures that pixel intensities correspond more
directly to tissue properties rather than scanner
artifacts [32]. Once uniformity is achieved,
intensity normalization is applied across all
subjects.  The normalization ~ process
standardizes pixel intensity distributions by
adjusting brightness and contrast levels to a
fixed mean and standard deviation, allowing
models to focus on anatomical differences
rather than imaging discrepancies. The next
critical stage involves skull stripping and brain
extraction, which isolate the intracranial region
by removing the skull, scalp, and surrounding
non-brain tissues. For volumetric scans, the
Brain Extraction Tool (BET) was utilized, while
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the 2-D Figshare dataset was processed through
a U-Net-based segmentation model trained on
open-source brain-masking datasets. This
operation ensures that only brain regions
containing gray matter, white matter,
cerebrospinal fluid, and tumor tissues are
retained for analysis. Effective skull stripping
eliminates redundant background information,
accelerates training, and prevents the CNN and
handcrafted feature extractors from focusing on
irrelevant high-contrast edges. After anatomical
isolation, the images undergo noise suppression
and smoothing, a step essential for removing
Rician noise while retaining fine structural
details such as tumor margins and peritumoral
edema. Anisotropic diffusion filtering was
adopted because of its ability to perform edge-
preserving smoothing. It selectively reduces
noise in homogeneous regions without blurring
tissue boundaries, a property that conventional
Gaussian filtering cannot achieve. In some
instances, Non-Local Means (NLM) filtering
was employed as an auxiliary step to average
pixel intensities based on patch similarity rather
than proximity, thereby improving local
structural coherence. The result is a set of
images with higher signal-to-noise ratios and
preserved spatial gradients that enhance both
handcrafted texture extraction (GLCM/LBP)
and CNN feature-map stability. To enhance
tumor visibility, Contrast-Limited Adaptive
Histogram Equalization (CLAHE) was applied.
Unlike global histogram equalization, which
can over-amplify noise and distort brightness,
CLAHE operates on localized tiles of the image
and limits contrast amplification through a
clipping threshold. This technique improves
local contrast in regions of subtle intensity
variation, making tumor boundaries and
internal heterogeneity more pronounced.
CLAHE proved particularly effective in
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highlighting FLAIR hyperintensities and T1lc-
enhanced tumor cores, leading to clearer
interpretability in Grad-CAM heatmaps and
improved CNN activation localization. In
addition to contrast enhancement, the
preprocessing  pipeline incorporates data
augmentation to artificially expand the diversity
of training examples. Augmentation strategies
such as random rotation (£20°), horizontal and
vertical flipping, scaling (x10 %), and
translation were employed to simulate real-
world variability in patient orientation and
scanner alignment [33]. This augmentation
helps the model develop invariance to
geometric  transformations and  prevents
overfitting, especially when the dataset size is
limited. Advanced augmentation techniques
such as elastic deformation and intensity
perturbation were also utilized to mimic
realistic clinical variations in tissue shape and
brightness. To further enhance diversity, a
Generative Adversarial Network (GAN)-based
augmentation framework was tested for
synthesizing additional training samples while
preserving  anatomical  plausibility.  All
preprocessing outputs were subjected to quality-
control (QC) evaluation to verify consistency
and accuracy. Metrics such as signal-to-noise
ratio (SNR), contrast-to-noise ratio (CNR), and
entropy were computed to quantify image
quality. Samples failing QC thresholds were
reprocessed with adjusted parameters, ensuring
that all data entering the CNN were of
diagnostic grade. The various stages of
preprocessing and their corresponding impacts
are summarized in Table 6, which lists the
sequence of operations, functional objectives,
and observed benefits within the hybrid
learning pipeline.

Table 6: Summary of preprocessing and enhancement stages used in the proposed hybrid CNN

framework.
Stage Technique / Tool Primary Objective | Impact on Image Quality
/ Model Performance
Spatial Resizing to 240 x 240 | Geometric Enables consistent
Standardization pixels, mutual-information | uniformity across | convolutional — receptive
registration subjects fields
Bias-Field N4ITK algorithm Correct intensity | Reduces scanner artifacts;
Correction non-uniformities improves texture
consistency
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Intens1ty Histogram standardization | Uniform  intensity | Enhances  comparability

Normalization and zscore scaling scale across datasets | between subjects

Skull Stripping BET (BraTS) / U-Net | Remove non-brain | Focuses analysis on
(Figshare) tissues intracranial structures;

reduces computation

Noise Reduction | Anisotropic  diffusion / | Suppress Rician noise | Improves tumor-boundary
NLM filtering while preserving | sharpness; stabilizes
edges features
Contrast CLAHE Highlight subtle | Improves lesion visibility
Enhancement tissue variations and CNN attention maps
Data Rotation, flipping, scaling, | Increase training | Enhances  generalization
Augmentation GAN synthesis diversity and reduce | and robustness

overfitting

To depict the

sequential interconnection

between these operations, Figure 6 presents a

Flair

Tlc

conceptual workflow of the MRI preprocessing
and enhancement pipeline.
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Figure 6: Conceptual workflow of the MRI preprocessing and enhancement pipeline.

The

comprehensive

preprocessing  and

that

handcrafted

texture descriptors

enhancement framework ensures that MRI
inputs entering the hybrid CNN are consistent,
noise-free, and diagnostically rich. By enforcing
geometric alignment, correcting scanner bias,
enhancing local contrast, and expanding data
diversity through augmentation, this stage
maximizes the reliability and interpretability of
downstream feature learning. Furthermore, it
guarantees

(GLCM/LBP) and deep CNN feature maps
operate on standardized inputs, reducing inter-
subject variability and improving model
generalization. Ultimately, this meticulous
preprocessing pipeline not only elevates the
quantitative performance of the hybrid
architecture but also strengthens its clinical
credibility, establishing a reproducible pathway
for real-world neuro-imaging applications.
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3- Automated Feature Extraction and
Optlmlzation Process:
The feature extraction mechanism lies at the
heart of the proposed hybrid deep-learning
stage where
converted into

framework, representing the
enhanced MRI data are
compact, representations
capable of capturing the full visual and
complexity of  brain-tumor
structures. Rather than relying solely on deep
networks or purely handcrafted descriptors, the
framework dual-stream
architecture that unites the precision and
interpretability of statistical texture analysis
with the adaptability and abstraction power of
convolutional feature learning. This synergy

discriminative

contextual

introduces a

ensures that information from both
microscopic  texture  irregularities  and
macroscopic ~ morphological  patterns  is

comprehensively modeled, providing a more
robust and clinically meaningful basis for
classification. After preprocessing, each MRI
slice enters two parallel analytical channels. In

the first, a handcrafted feature extraction
branch  computes  quantitative  texture
descriptors  through the Gray-Level Co-

occurrence Matrix (GLCM) and Local Binary
Patterns (LBP). GLCM measures the frequency
of co-occurring gray-level pairs separated by
fixed  spatial  relationships,  producing
parameters such as correlation,
homogeneity, energy, and entropy. These
metrics reveal subtle spatial dependencies that
distinguish normal tissue from tumorous
regions. LBP,
textures by thresholding each pixel relative to its
neighbors, forming rotation-invariant binary
codes that summarize local structural
irregularities [34]. The combination of GLCM
and LBP ensures that both global statistical
uniformity and fine

contrast,

in contrast, encodes micro-

local variations are
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faithfully represented. All handcrafted features
are normalized to eliminate scale dependency
and concatenated into a fixed-length statistical
vector that expresses the intrinsic textural
fingerprint of each MRI slice. In parallel, the
deeplearning branch employs a custom
Convolutional Neural Network (CNN) to
extract hierarchical semantic features. The
network consists of successive convolutional
blocks, each comprising convolutional, batch-
normalization, ReLU activation, and pooling
layers. Early layers focus on detecting primitive
edges and gradient transitions, while deeper
layers respond to increasingly complex motifs
such as irregular tumor boundaries, necrotic
cores, and peritumoral edema patterns. By
processing multi-modal MRI inputs T1, T2,
FLAIR, and contrastenhanced Tlc the CNN
learns to associate modality-specific cues with
characteristic disease signatures. Global average
pooling and dropout are introduced at the final
stages to minimize overfitting and reduce
redundancy, vyielding  compact
embeddings that capture high-order spatial
context and shape semantics. Both feature
are processed independently but
converge at a later fusion layer. The handcrafted
path  contributes interpretable,
anchored cues about textural heterogeneity,
CNN path supplies deep
contextual understanding derived from end-to-
end learning. Their complementarity produces
a feature space that is simultaneously human-
readable and machine-efficient bridging the
explainability of radiomic descriptors with the
predictive ~ power  of
representations. To clarify the characteristics
and roles of these two feature categories, Table
7 summarizes the key properties of handcrafted
and deep features within the proposed hybrid
system.

feature

streams

domain-

whereas the

modern  neural

Table 7: Comparison of handcrafted and deep features in the hybrid CNN framework.

Feature Source / Approximate Nature of Principal Potential
Type Method Dimensionality | Information Strengths Limitations
Captured
Handcrafted | GLCM, LBP | 100-250 Local statistical | High Limited
Features (texture features per | and structural | interpretability; | abstraction;
descriptors) image texture robust to small | sensitive to
variations data sizes; | parameter
explicit
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quantitative tuning and
meaning noise
Deep CNN  with | 1,000-2,000 Hierarchical Strong non- | Reduced
Features multi-modal | learned features | spatial and | linear interpretability;
input (5 | per image semantic modeling requires larger
convolutional representations | capacity; training  data
blocks) across captures and
modalities contextual computational
relationships resources

The table illustrates how handcrafted features
serve as explainable, texture-based indicators of
tumor heterogeneity, while deep features supply
complex hierarchical representations that
model shape, intensity, and global spatial
relationships. Together, they form the dual

foundation upon which the fusion and
classification stages operate. The entire dual-
stream extraction workflow is depicted in
Figure 7, which visualizes the coordinated
operation of both branches from input MRI to
feature fusion.
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Figure 7: Dual-stream feature extraction and integration process in the proposed hybrid CNN

architecture.
Through  this  parallelized  extraction
mechanism, the framework achieves a harmonized synthesis that captures the intricate

interplay between tumor micro-textures,
macroscopic morphology, and

surroundings. This integrative approach

multidimensional balance between precision
and abstraction. The handcrafted descriptors
enrich the interpretability of the learning

contextual

process by grounding model predictions in
quantifiable texture parameters recognizable to
radiologists. The CNN complements this by
discovering latent patterns and complex spatial
hierarchies beyond human perception. The
resulting hybrid representation is therefore not
merely a concatenation of features but a

ensures that every subsequent step from fusion
to classification operates on a
foundation that is comprehensive,
discriminative, and deeply aligned with the
underlying biological and anatomical realities
of brain-tumor imaging.

feature
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5.4- Model Training and Adaptive Parameter
Control Framework:

The model training and optimization phase
represents the most computationally intensive
and analytically critical stage of the hybrid deep-
learning framework. It is in this stage that the
preprocessed, feature-enriched, and fused data
are iteratively learned by the hybrid CNN
model to minimize classification error and
maximize diagnostic accuracy. The objective of
this training process is not only to achieve high
numerical performance but also to ensure
stability, reproducibility, and clinical reliability
in tumor detection and classification. Every
component from data division and learning-
rate scheduling to regularization and optimizer
selection was designed with the goal of
balancing convergence speed, generalization
ability, and interpretability. Training began
with the integration of the BraTS 2021 and
Figshare datasets, each split into training,
validation, and testing subsets according to a
70:15:15 ratio to maintain statistical
consistency and ensure that all tumor classes
were equally represented across the folds. A five-
fold cross-validation approach was employed to
guarantee robustness, minimize sampling bias,
and allow generalization across unseen data.
Each fold was trained independently with
shuffled samples, and model weights were
reinitialized at the start of every iteration to
prevent any prior bias accumulation. The
hybrid CNN architecture was implemented in
TensorFlow 2.12 and trained on a high-
performance GPU environment (NVIDIA RTX
A6000 with 48 GB VRAM). Each training
epoch processed mini-batches of 32 MRI slices
to balance GPU memory efficiency with
gradient stability. The model was optimized
using the Adam optimizer, chosen for its
adaptive  learningrate  adjustment  and
momentum-based gradient correction. The
initial learning rate was set to 0.001 and
decayed exponentially with a factor of 0.9 every
ten epochs to prevent overfitting and oscillatory
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convergence. The categorical cross-entropy loss
function was employed as the primary objective
metric, as it effectively captures the probabilistic
divergence between predicted and true tumor
classes. To enhance model stability and avoid
overfitting an issue common in medical image
datasets due to limited sample sizes several
regularization strategies were implemented.
Dropout layers were inserted after each dense
layer with a rate of 0.4, randomly deactivating
neurons during training to  promote
redundancy in feature learning. Batch
normalization ~ was  applied  throughout
convolutional layers to standardize
intermediate activations, ensuring smoother
gradient propagation. Early stopping was
introduced based on validation-loss monitoring
with a patience threshold of 15 epochs; this
mechanism  halted training when no
improvement was observed, conserving
computational resources while preserving
optimal model parameters [35]. The total
number of training epochs varied between 100
and 150, depending on convergence behavior.
Performance evaluation was conducted after
every epoch using both training and validation
datasets. Metrics such as accuracy, precision,
recall (sensitivity), specificity, and Fl-score were
computed to assess classification performance
from multiple perspectives. The model also
produced Receiver Operating Characteristic
(ROQ) curves for each class, and the Area
Under the Curve (AUC) was calculated to
quantify the discriminative capacity of the
classifier. Across all folds, the hybrid CNN
consistently achieved a mean accuracy of
99.1%, sensitivity of 98.7%, and specificity of
98.9%, outperforming traditional CNN models
trained without handcrafted feature fusion. A
concise summary of the hyperparameters and
optimization settings is presented in Table 8,
detailing the architecture and training
configuration used to achieve optimal
convergence.

Table 8: Model training configuration and hyperparameter settings.

Parameter Description / Value
Framework TensorFlow 2.12 (Python 3.9)
Hardware NVIDIA RTX A6000 GPU (48 GB VRAM)
Batch Size 32 MRI slices
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Learning Rate 0.001 (exponential decay, factor = 0.9 / 10 epochs)
Optimizer Adam (1 =0.9, B2=0.999, € = 1le—8)

Loss Function Categorical Cross-Entropy

Epochs 100-150 (with early stopping, patience = 15)
Regularization Dropout (0.4), Batch Normalization

Validation Split 15% of data per fold

Cross-Validation Five-fold with randomized initialization

Evaluation Metrics Accuracy, Sensitivity, Specificity, Precision, Fl-score, AUC

To visually illustrate the optimization process,
Figure 8 presents the learning convergence
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curves depicting the relationship between
training and validation accuracy and loss over
the epochs.
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Figure 8: Training and validation performance curves for the hybrid CNN model.

The convergence pattern observed in Figure 12
confirms that the hybrid CNN framework
achieved stable and rapid optimization with
minimal variance between training and
validation metrics. The parallel alignment of
accuracy and loss curves demonstrates that the
model maintained excellent generalization
capacity without succumbing to overfitting, a
direct result of the integration of regularization
techniques and the adaptive learning strategy.
Furthermore, the convergence speed was found
to be superior compared to standard CNN
architectures,  primarily due to the
complementary contribution of handcrafted
texture descriptors, which provided an
additional regularizing effect and stabilized the
learning trajectory. The interpretability of the
trained model was further enhanced through

Gradient-weighted Class Activation Mapping
(Grad-CAM) visualizations, which highlighted
the regions most influential in classification
decisions. The heatmaps revealed strong
activation around tumor boundaries and core
regions, validating that the model’s focus
aligned with clinically relevant structures. Such
interpretability tools confirm that the model
not only performs accurate classification but
also reasons in a manner consistent with
radiological intuition. The model training and
optimization process successfully established a
balance between computational precision and
clinical transparency. By employing adaptive
learning-rate control, strong regularization, and
hybrid feature integration, the model achieved
near-perfect classification performance across
multiple ~ datasets ~ while =~ maintaining
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1nterpretability and reproducibility.  This
optimized training strategy thus ensures that the
hybrid CNN framework is both technically
sound and clinically viable, providing a robust
foundation for future deployment in real-world
neuro-imaging diagnostics.
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Results and Discussion:

The this study present a
comprehensive evaluation of the proposed
hybrid CNN-based architecture integrating
handcrafted and deep features for brain tumor
detection and classification. This section details
the empirical findings from model training,
validation, and testing using the BraTS 2021
and Figshare MRI datasets, covering both
quantitative  performance and
qualitative  interpretability analyses. The
findings demonstrate that the combination of
handcrafted textural descriptors (GLCM and
LBP) with convolutional deep-learning features
not only enhanced accuracy and generalization
but also improved interpretability and clinical
reliability. The hybrid model achieved a
remarkable level of diagnostic accuracy across
all tumor categories, surpassing conventional
CNN architectures and
learning models. The final model achieved an
average accuracy of 99.1%,

results of

outcomes

classical machine

classification
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sensitivity of 98.7%, and specificity of 98.9%,
establishing its capability to detect tumors
across multiple MRI modalities with high
precision. The of 98.8%
confirms that the model maintained an ideal
balance between precision and recall.
Moreover, the Area Under the ROC Curve
(AUC) reached 0.994, highlighting the system’s
ability to robustly differentiate between healthy
and The

revealed

mean Fl-score

tumorous tissues. class—wise

performance analysis consistent
stability and accuracy across all tumor types,
including glioma, meningioma, pituitary
adenoma, low-grade glioma (LGG), and high-
grade glioma (HGG). The hybrid system’s
adaptive fusion strategy allowed it to capture
both local textural patterns and global semantic
effectively distinguishing subtle
variations between visually similar subtypes
such as LGG and HGG a persistent challenge
in traditional neuro-imaging
systems [36]. A detailed quantitative summary
of the hybrid model’s performance across
tumor categories is provided in Table 9,
illustrating the uniformity and reliability of
obtained through five-fold
validation.

structures,

classification

results Cross-

Table 9: Quantitative performance of the proposed hybrid CNN framework across tumor classes.

The quantitative findings confirm that the
hybrid CNN framework is not only statistically
robust but also exhibits exceptional intra-class
and inter-class consistency. The small standard

Tumor Category | Accuracy Precision Sensitivity Specificity F1-Score | AUC
(%) (%) (%) (%) (%)

Glioma 99.2 98.9 98.7 99.1 98.8 0.995

Meningioma 98.9 98.5 98.2 98.6 98.3 0.992

Pituitary 99.0 99.1 98.8 99.3 98.9 0.994

Adenoma

LGG 99.3 99.0 98.9 99.4 99.0 0.996

HGG 99.1 98.8 98.6 99.0 98.7 0.995

Average 99.1 98.9 98.7 99.1 98.8 0.994
including Support Vector Machines (SVM),

Random Forests (RF), conventional

CNNs, and transfer-learning-based CNNs such
as VGG-16. The results, presented in Table 10,

deviation (<0.5%) across folds indicates strong demonstrate that the proposed hybrid
generalization ~ capability and  minimal architecture consistently outperforms all
overfitting. A comparative performance analysis comparative approaches across all key
was also carried out to benchmark the proposed performance indicators.

system against several baseline models,
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Table 10: Comparative performance of the proposed hybrid CNN model with baseline methods.

Model Feature Type Accuracy | Sensitivity | Specificity F1-
(%) (%) (%) Score
(%)
SVM Handcrafted (GLCM + | 91.6 89.4 90.1 89.7
LBP)
Random Forest Handcrafted (GLCM + | 92.8 90.7 91.5 91.0
LBP)
CNN (Baseline) | Deep-only 95.4 94.1 93.8 94.0
VGG-16 Deep-only 96.8 95.3 94.9 95.5
(Transfer
Learning)
Proposed Handcrafted +  Deep | 99.1 98.7 98.9 98.8
Hybrid CNN Features (Adaptive Fusion)

This comparison illustrates the hybrid model’s
superiority in every performance category. The
adaptive  fusion achieved a
significant improvement of approximately 2.3%
over transfer-learning CNNs and 7-8% over
classical handcrafted-based classifiers. This
improvement demonstrates that handcrafted
features, when properly fused with deep
features, introduce interpretive granularity that
enriches deep-learning decision boundaries
without compromising

mechanism

efficiency. The distribution of true and false
predictions is visualized in Figure 9, which
presents the confusion matrix of the proposed
hybrid CNN. The matrix reveals near-perfect
classification alignment, with almost all
predictions lying along the diagonal axis. The
only minor overlaps occurred between LGG
and HGG, primarily due to their shared visual
and morphological characteristics in MRI
scans.
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Figure 9: Confusion matrix of tumor classification using the proposed hybrid CNN model.

Beyond numerical metrics, interpretability was
a major component of the evaluation. To
visualize how the model identifies tumor
regions, Gradient-weighted Class Activation
Mapping (Grad-CAM) was employed to
generate activation heatmaps. These heatmaps
revealed that the CNN consistently focused on

tumor regions, peritumoral edema, and

relevant structural boundaries, closely aligning
with radiological ground truth. This behavior
demonstrates that the model’s predictions are
driven by medically meaningful evidence rather
than  irrelevant  artifacts. The  visual
interpretability outcomes are summarized in
Figure 10, showing representative samples from
each tumor type.
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Figure 10: Grad-CAM visualizations demonstrating tumor localization and interpretability.

The Grad-CAM visualizations confirmed that
the hybrid CNN not only provides accurate
predictions but also offers interpretive
transparency by visually pinpointing the
pathological regions influencing its
classification decisions. This enhances the
trustworthiness of the model in a clinical
environment, where interpretability remains a
key prerequisite for Al adoption. To assess
statistical robustness, a variance analysis across
all evaluation folds was performed. The
standard deviation in accuracy, sensitivity, and
Fl-score remained below +0.5%, confirming
stable generalization even when exposed to
different data subsets. Additionally, the model

exhibited consistent convergence behavior with
minimal oscillation in training and validation
losses, affirming its resilience against overfitting
[37]. The training time per fold averaged
approximately 145 minutes on an NVIDIA
RTX A6000 GPU, which is computationally
efficient given the hybrid

architecture’s dual-stream nature. A graphical
comparison of model performance across
different evaluation metrics is shown in Figure
11, illustrating the superior and stable
performance trends of the hybrid CNN model.
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Figure 11: Comparative evaluation of accuracy, sensitivity, specificity, and Fl-score across models.

The experimental results confirm that the
proposed hybrid CNN model offers a
substantial advancement in  brain-tumor
accuracy,  stability,  and
interpretability. By integrating handcrafted
statistical descriptors and deep-learning feature
representations through an adaptive fusion
mechanism, the system overcomes the
limitations of both traditional machine-
learning and deep-learning approaches. The
resulting performance metrics nearly 99%
accuracy, strong sensitivity and specificity, and
interpretable visual outputs demonstrate that
the hybrid CNN framework is both technically
robust and clinically relevant. It stands as a
reliable candidate for real-world neuro-imaging
applications, offering the precision of Al-based
automation while preserving the transparency
and traceability necessary for clinical trust and
decision support.

classification

Future Work:

While the proposed hybrid CNN-based
framework has demonstrated exceptional
performance, robustness, and interpretability
for brain tumor detection and classification,
several promising directions remain open for
future research and system enhancement. The
next phase of this research will aim to broaden
the clinical applicability, improve
computational scalability, and incorporate
advanced Al paradigms that further enhance

CNN Hybrid CNN

precision, transparency, and integration with
real-world healthcare systems. One of the most
critical ~future extensions involves the
integration of multimodal and multi-
parametric data sources. The current study
utilized MRI sequences such as T1, T2, FLAIR,
and Tlc¢; however, combining these with
complementary  imaging modalities like
Diffusion Tensor Imaging (DTI), Positron
Emission Tomography (PET), and MR
Spectroscopy could yield deeper physiological
and metabolic insights [38]. Such fusion of
structural, functional, and metabolic data could
substantially improve differentiation between
tumor grades and enable more accurate
assessment of infiltration, recurrence, and
treatment response. Future architectures may
incorporate modality-specific encoders that
dynamically learn cross-modality correlations,
leading to richer and more biologically
grounded feature representations. Another
promising avenue involves the deployment of
3D convolutional architectures. While the
current framework operates on 2D MRI slices
for computational efficiency, extending the
model into a volumetric (3D CNN) paradigm
will allow it to capture interslice spatial
continuity and contextual depth information.
This enhancement would enable more
anatomically  faithful segmentation and
classification of complex, irregular tumor
shapes. Hybrid 3D-2D architectures or
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attentlonaguided volumetric CNNs could also
mitigate the limitations of slice-based analysis
while preserving efficiency. The incorporation
of explainable and transparent Al mechanisms
will continue to be a core focus. Although Grad-
CAM has proven effective for qualitative
interpretability, future research can employ
more advanced explainability techniques such
as Layerwise Relevance Propagation (LRP),
SHAP, or occlusion sensitivity analysis to
provide quantitative interpretability metrics.
These tools will not only assist in clinical
validation but also contribute toward regulatory
compliance, ethical transparency, and model
auditing in medical Al systems. From a
computational standpoint, future work will
explore federated and privacy-preserving
learning frameworks. Since patient MRI data
are sensitive and often distributed across
institutions, deploying federated learning will
allow model training on decentralized datasets
without exposing raw patient information [39)].
This paradigm aligns with modern ethical
standards and legal frameworks such as HIPAA
and GDPR. Integrating the hybrid CNN model
into a federated architecture could significantly
improve  generalization across hospitals,
scanners, and populations while maintaining
data confidentiality. In addition, real-time
inference  optimization and lightweight
deployment strategies will be explored to enable
clinical translation. Converting the hybrid
model into an optimized format using
quantization,  pruning, or  knowledge
distillation can allow deployment on edge
devices or hospital imaging workstations with
limited computational resources.  Such
optimization would enable immediate feedback
during MRI acquisition or radiological
examination, assisting clinicians in rapid
decision-making. Another important research
trajectory will focus on tumor segmentation and
progression prediction [40]. Extending the
current classification system to perform pixel-
wise segmentation and temporal progression
modeling will enhance its clinical utility for
treatment  planning and  longitudinal
monitoring. Combining the hybrid feature
extraction approach with temporal modeling
networks such as ConvLSTM or Transformer-
based architectures could enable early
prediction of recurrence or response to therapy.

Volume 3, Issue 6, 2025

Furthermore, future work should incorporate
large-scale, multi-center clinical validation to
evaluate the model’s real-world robustness.
Collaborations with hospitals and research
institutes will facilitate the acquisition of
diverse datasets, allowing assessment across
patient demographics, MRI scanners, and
imaging protocols [41]. Statistical validation
through confidence intervals, inter-rater
reliability analysis, and external test sets will
further establish clinical reliability and
generalizability. Lastly, integrating the hybrid
CNN into a comprehensive clinical decision-
support system (CDSS) will form the bridge
between algorithmic innovation and practical
application. Such systems could combine tumor
classification, segmentation, prognosis
prediction, and treatment recommendation
modules into a unified Al-assisted diagnostic
platform.  Coupled  with  explainable
visualization dashboards, this would allow
radiologists and oncologists to interact
intuitively with model predictions, validate
findings, and make informed treatment
decisions in real time.

Conclusion:

This study presented a comprehensive and high-
performing hybrid deep-learning framework for
automated brain tumor detection and
classification using magnetic resonance imaging
(MRI). By integrating handcrafted texture
descriptors namely the GrayLevel Co-
occurrence Matrix (GLCM) and Local Binary
Patterns (LBP) with deep convolutional neural
representations, the  proposed  model
successfully bridged the gap between traditional
radiomics and modern data-driven learning.
The hybrid architecture achieved state-of-the-art
accuracy (99.1%), sensitivity (98.7%), and
specificity ~ (98.9%),  while  maintaining
interpretability through transparent
visualization techniques such as Gradient
weighted Class Activation Mapping (Grad-
CAM). These results substantiate the potential
of hybrid architectures as an effective,
explainable, and clinically  trustworthy
approach for neuro-imaging diagnostics. The
framework demonstrated that handcrafted
features still hold significant value when
synergistically combined with deep-learning
representations. The inclusion of GLCM and

https://nmsreview.org

| Afzal et al., 2025 | Page 152



)J > RINMSR

Volume 3, Issue 6, 2025

Review Journal of Neurological
g & Medical Sciences Review

LBP descriptors enriched the CNN feature
space with fine-grained texture and spatial
correlation details, while the adaptive fusion
strategy ensured balanced contribution from
both feature domains. This hybrid design not
only enhanced classification accuracy but also
improved model stability, reduced overfitting
tendencies, and increased robustness against
imaging noise and intensity variations. The
successful differentiation between low-grade
and high-grade gliomas, often considered one of
the most challenging classification tasks in
neuro-oncology, highlighted the system’s
diagnostic  sensitivity ~and  contextual
understanding of tumor heterogeneity. A key
achievement of this study lies in its
commitment to interpretability and clinical
transparency. The Grad-CAM  heatmaps
confirmed that the network’s activations
consistently aligned with radiologically relevant
regions tumor cores, peritumoral edema, and
lesion boundaries demonstrating that the
model’s decisions are grounded in meaningful
anatomical patterns rather than spurious
correlations. This level of transparency is
indispensable for building clinical trust and
facilitating adoption in radiological workflows.
The hybrid CNN framework also exhibited
notable computational efficiency. Despite its
dualstream architecture, it achieved rapid
convergence with minimal variance across
validation folds, completing each training
session within approximately 145 minutes on a
single NVIDIA RTX A6000 GPU. The low
standard  deviation (<0.5%) across all
performance  metrics  underscores its
generalization capability and reproducibility
two essential criteria for clinical deployment
and large-scale institutional integration. Beyond
its  technical achievements, this work
contributes conceptually to the evolving
landscape of explainable artificial intelligence
(XAI) in medical imaging. It demonstrates that
high accuracy and interpretability are not
mutually exclusive but can coexist through
thoughtful architectural fusion. The proposed
model’s explainable outputs make it not only a
diagnostic aid but also a collaborative decision-
support tool capable of complementing human
expertise.
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