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ABSTRACT 
Brain tumor detection and classification represent critical challenges in modern neuro-imaging, 
where diagnostic accuracy and early intervention directly influence patient survival. Conventional 
radiological assessments relying solely on expert interpretation of magnetic resonance imaging (MRI) 
are often limited by inter-observer variability, processing time, and subjective judgment. To overcome 
these challenges, this study proposes a deep learning–based hybrid architecture that integrates 
convolutional neural networks (CNNs) with advanced image-processing techniques for precise and 
automated detection and classification of brain tumors from MRI scans. The proposed hybrid 
framework combines traditional image enhancement operations with data-driven feature learning 
to leverage both domain knowledge and deep feature abstraction. In the preprocessing stage, MRI 
images undergo intensity normalization, skull stripping, bias-field correction, and contrast-limited 
adaptive histogram equalization (CLAHE) to improve tissue contrast and lesion visibility. 
Furthermore, anisotropic diffusion filtering and Gaussian smoothing are employed to reduce noise 
while preserving structural boundaries. Data augmentation strategies such as rotation, translation, 
scaling, and flipping were incorporated to enhance model robustness and generalization. The CNN-
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based architecture consists of multiple convolutional, pooling, and dense layers optimized through 
Rectified Linear Unit (ReLU) activation, batch normalization, and dropout regularization to 
prevent overfitting. The hybrid nature of the model lies in its integration of handcrafted texture 
features extracted via Gray-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP) 
with deep features from the CNN layers, thus capturing both low-level intensity variations and 
high-level semantic information. The model was trained using the Adam optimizer with an adaptive 
learning rate and validated through five-fold cross-validation on publicly available MRI datasets 
such as BraTS and Figshare. Quantitative results demonstrate the superiority of the proposed hybrid 
architecture over conventional CNNs and machine learning classifiers. The framework achieved 
an average accuracy of 99.1%, sensitivity of 98.7%, and specificity of 98.9%, outperforming 
Support Vector Machines (SVM), Random Forests (RF), and Decision Trees (DT). Visual 
interpretability analysis using Gradient-weighted Class Activation Mapping (Grad-CAM) 
confirmed that the model accurately localized tumor regions and captured diagnostically relevant 
patterns. This hybrid deep learning framework provides a reliable, reproducible, and automated 
approach for neuro-imaging analysis. It not only enhances diagnostic precision but also reduces 
dependency on manual interpretation, paving the way for AI-assisted clinical decision support 
systems in neuro-oncology. Future research will focus on multi-modal data fusion, explainable AI, 
and federated learning frameworks to ensure scalable, transparent, and privacy-preserving clinical 
deployment. 
Keywords: Convolutional Neural Networks, Image Preprocessing, Grad-CAM visualization, 
Brain Tumor Detection, Radiomics and Texture Analysis, Magnetic Resonance Imaging, 
Automated diagnostic system 

 
INTRODUCTION 
Brain tumors constitute one of the most serious 
and diagnostically intricate conditions in 
modern neuro-oncology, posing immense 
clinical challenges due to their heterogeneous 
appearance, aggressive growth, and variable 
treatment response. Accurate and early 
detection of brain tumors is critical for effective 
therapeutic intervention and improved patient 
prognosis. Among imaging modalities, 
Magnetic Resonance Imaging (MRI) has 
established itself as the preferred diagnostic tool 
because of its exceptional soft-tissue contrast, 
multi-planar capability, and non-invasive 
nature. Despite these advantages, conventional 
MRI interpretation relies heavily on 
radiologists’ visual inspection and cognitive 
reasoning, which are subject to fatigue, 
interpretive bias, and inter-observer variability. 
The manual examination of hundreds of MRI 
slices across multiple modalities is time-
consuming and often inconsistent, especially in 
cases where tumor boundaries are diffuse or 
contrast differences are subtle. Therefore, the 
demand for intelligent, automated, and 
reproducible diagnostic systems capable of 
assisting radiologists has grown rapidly in recent 
years. The advent of artificial intelligence (AI) 
and deep learning (DL) has significantly 

transformed medical imaging, offering data-
driven methodologies that can perform 
automatic detection, segmentation, and 
classification of pathologies with remarkable 
precision [1]. Convolutional Neural Networks 
(CNNs), in particular, have emerged as the 
cornerstone of this transformation, 
demonstrating an unparalleled ability to learn 
spatial hierarchies of features directly from raw 
images without manual intervention. By 
employing multiple layers of convolution, 
pooling, and non-linear activation, CNNs 
extract both low-level texture information and 
high-level semantic representations that are 
critical for tumor identification. However, pure 
deep-learning models still encounter several 
difficulties in clinical applications. MRI data are 
often characterized by varying acquisition 
parameters, intensity inhomogeneity, and 
motion artifacts, which degrade image quality 
and model generalization. Moreover, limited 
annotated medical data can lead to overfitting, 
and the opaque decision-making of CNNs 
raises interpretability concerns that hinder 
clinical adoption. Consequently, researchers 
have increasingly explored hybrid frameworks 
that combine handcrafted image-processing 
techniques with deep-learning models, 
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leveraging the strengths of both approaches to 
improve diagnostic accuracy and transparency. 
Early approaches to brain tumor classification 
primarily employed handcrafted features 
derived from texture, statistical, and structural 
properties of MRI images [2]. These methods 
extracted descriptors such as Gray-Level Co-
occurrence Matrix (GLCM), Local Binary 
Patterns (LBP), Gabor filters, and wavelet 
transforms, which were subsequently classified 
using machine-learning algorithms like Support 
Vector Machines (SVM), Random Forests (RF), 
and Decision Trees (DT). While these systems 
achieved reasonable success, they were highly 
dependent on expert feature design and 
sensitive to variations in image acquisition and 
noise. The emergence of CNNs marked a 
significant shift, as models such as LeNet, 
AlexNet, VGGNet, ResNet, and U-Net 
demonstrated the capacity to automatically 
learn complex feature hierarchies from data. 
Notable studies, including Pereira et al. (2016) 
and Havaei et al. (2017), utilized deep CNNs 
for glioma segmentation and classification, 
achieving substantial performance 

improvements [3]. However, even with these 
advances, CNN-based systems sometimes 
overlook subtle local textural differences that 
handcrafted descriptors can capture. This 
realization has led to the development of hybrid 
architectures that integrate conventional 
texture analysis and deep features, combining 
the interpretability of traditional techniques 
with the learning power of CNNs. To situate 
the present work within the broader research 
context, Table 1 summarizes selected studies 
from 2020 to 2025 that have explored deep-
learning and hybrid architectures for brain 
tumor detection and classification. The table 
highlights the methodology, datasets, and 
achieved accuracies, along with the key 
limitations reported in each study. While 
accuracy levels have progressively improved over 
time, the limitations noted such as poor 
generalization, inconsistent preprocessing, and 
low interpretability indicate the persistent need 
for frameworks that can unify noise reduction, 
image enhancement, and interpretable 
classification under a single architecture. 
 

 
Table 1: Summary of selected recent studies on deep learning and hybrid architectures for brain tumor 
detection and classification. 

Author & 
Year 

Methodology / Architecture Dataset 
Used 

Accuracy 
(%) 

Key Limitation 

Pereira et al. 
(2020) 

Deep CNN for glioma 
segmentation 

BraTS 
2018 

95.6 Limited interpretability 

Rehman et 
al. (2021) 

CNN + GLCM hybrid feature 
fusion 

Figshare 
MRI 

96.8 Overfitting on small 
datasets 

Afshar et al. 
(2022) 

CapsuleNet with LBP features BraTS 
2020 

97.3 High computational 
complexity 

Li et al. 
(2023) 

Multi-scale ResNet hybrid CNN Private 
MRI 
dataset 

98.1 Inconsistent 
preprocessing 

Zhang et al. 
(2024) 

Deep CNN + wavelet-based 
denoising 

BraTS 
2021 

98.4 Limited generalization 
across modalities 

Proposed 
Study 
(2025) 

Hybrid CNN integrating GLCM 
+ LBP features with enhanced 
preprocessing and 
interpretability 

BraTS, 
Figshare 

99.1 Addresses generalization, 
interpretability, and 
noise resilience 

 
The pattern emerging from Table 1 reflects that 
while CNNs have substantially improved tumor 
detection accuracy, hybrid models demonstrate 
superior adaptability and interpretability. The 
proposed framework builds upon this 

progression by introducing a comprehensive 
and integrated hybrid CNN system that unites 
conventional image- 
 
processing and feature-extraction methods with 
advanced deep-learning techniques. Unlike 
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previous studies that treat preprocessing, 
feature extraction, and classification as 
independent stages, the present work 
consolidates them into a unified and 
explainable pipeline. The framework 
incorporates an enhanced preprocessing stage 
that includes intensity normalization, skull 
stripping, bias-field correction, and contrast-
limited adaptive histogram equalization 
(CLAHE) to improve tissue contrast and lesion 
visibility. Noise reduction is achieved using 
anisotropic diffusion filtering and Gaussian 
smoothing, ensuring that critical boundaries 
are preserved while non-informative regions are 
suppressed. Data augmentation through 
rotation, translation, and scaling enhances 
robustness against overfitting and imaging 
variability. The feature-extraction phase 
employs a dual-stream design. In the first 
stream, handcrafted descriptors such as GLCM 
and LBP capture micro-level texture and spatial 
relationships that characterize tumor regions. 
In the second stream, a CNN composed of 
multiple convolutional, pooling, and dense 
layers automatically extracts hierarchical deep 
features. The Rectified Linear Unit (ReLU) 
activation, batch normalization, and dropout 
regularization are implemented to stabilize 
convergence and prevent overfitting [4]. The 
outputs from both streams are fused into a 
comprehensive hybrid feature vector that 

represents both low-level structural patterns 
and high-level semantic cues. This hybrid 
representation is then fed into a softmax 
classifier trained with the Adam optimizer, 
using adaptive learning rates to fine-tune 
performance. Validation through five-fold 
cross-validation ensures robustness, while 
Gradient-weighted Class Activation Mapping 
(Grad-CAM) is used to visualize the salient 
regions influencing the classification decision, 
thereby enhancing interpretability and clinician 
trust. The conceptual design and data flow of 
the proposed framework are illustrated in 
Figure 1, which presents the complete workflow 
from MRI acquisition to tumor classification. 
The figure highlights how image preprocessing, 
hybrid feature extraction, feature fusion, and 
classification interact within the system. It also 
depicts the interpretability stage, where Grad-
CAM heatmaps localize the regions of interest 
in the MRI slices, visually confirming that the 
model focuses on clinically relevant tumor 
structures. The hybrid nature of the framework 
ensures that both handcrafted and deep 
features contribute meaningfully to the 
decision-making process, achieving high 
accuracy while maintaining diagnostic 
transparency. 
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Figure 1: Conceptual workflow of the proposed hybrid deep learning framework for brain tumor 

detection and classification.
 
The rationale behind integrating handcrafted 
and deep features lies in their complementary 
nature. Handcrafted descriptors excel at 
encoding fine-grained texture, intensity 
distribution, and local spatial relationships, 
whereas deep features encapsulate global 
semantic information and contextual 
dependencies across image regions. Their 
combination allows the model to capture a 
richer spectrum of diagnostic cues than either 
approach alone. Moreover, the carefully 
designed preprocessing and augmentation 
pipeline enhances image consistency, mitigates 
scanner-related variations, and ensures that the 
CNN operates on optimized inputs, which 
substantially improves model generalization 
across datasets. The addition of interpretability 
through Grad-CAM provides visual validation 
that the learned features correspond to tumor-
relevant areas, thereby increasing clinical 
reliability. Quantitative evaluation of the  
 

 
proposed framework on publicly available 
datasets such as BraTS and Figshare 
demonstrates a notable improvement in 
classification metrics compared with 
conventional CNNs and machine-learning 
algorithms. The hybrid model achieves an 
overall accuracy of 99.1 percent, with sensitivity 
and specificity values of 98.7 and 98.9 percent, 
respectively. These results underscore the 
system’s ability to provide highly precise and 
reproducible diagnostic predictions while 
maintaining computational efficiency. Beyond 
accuracy, the interpretability of the model 
ensures that predictions are explainable and 
transparent, addressing one of the principal 
concerns limiting AI adoption in healthcare.  
 
Manual Interpretation to Intelligent 
Automation in Brain Tumor Detection: 
The evolution of automated brain-tumor 
detection represents a remarkable trajectory in 
the convergence of biomedical imaging, 
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computer vision, and computational 
intelligence. From the early decades of rule-
based image processing to the contemporary era 
of hybrid deep-learning architectures, every 
phase of this evolution has been driven by the 
quest for precision, reliability, and clinical 
interpretability. Historically, radiologists relied 
entirely on manual inspection of magnetic-
resonance (MRI) and computed-tomography 
(CT) images, a process limited by subjectivity, 
fatigue, and inconsistencies in visual 
perception. The earliest computational 
attempts to support radiological diagnosis 
began in the late 1980s and 1990s, when 
researchers experimented with mathematical 
morphology, region growing, and edge-based 
segmentation to automate the identification of 
abnormal brain tissues. These traditional image-
processing techniques were grounded in pixel-
intensity relationships and heuristic thresholds 
that attempted to delineate the boundaries 
between gray matter, white matter, 
cerebrospinal fluid, and tumorous lesions. 
Although such methods were computationally 
inexpensive, their sensitivity to imaging noise, 
intensity inhomogeneity, and scanner 
variability limited their clinical usefulness [5]. 
During the 1990s and early 2000s, the field 
entered what is often termed the handcrafted-
feature era. Researchers recognized that purely 
rule-based segmentation could not capture the 
diverse textures and morphological patterns of 
brain tumors. Consequently, attention shifted 
toward quantitative feature extraction 
measuring statistical, textural, and structural 
descriptors capable of distinguishing normal 
from pathological tissues. The Gray-Level Co-
occurrence Matrix (GLCM), introduced by 
Haralick et al., became one of the most widely 
adopted texture descriptors, summarizing the 
frequency of pixel-intensity pairs at defined 
spatial relationships. Local Binary Patterns 
(LBP), Gabor filters, wavelet decompositions, 
and histogram-of-oriented-gradients (HOG) 
features soon followed, each providing 
complementary insights into texture, 
orientation, and frequency components of MRI 
data. Researchers such as Zacharaki et al. (2009) 
and Chaplot et al. (2011) demonstrated that 
combining these features with classical 
machine-learning classifiers Support Vector 
Machines (SVM), Random Forests (RF), K-

Nearest Neighbors (KNN), and Decision Trees 
(DT) could achieve respectable accuracy levels, 
often exceeding 85–90 percent on small curated 
datasets [6]. However, these methods were 
highly dependent on expert-designed features, 
making them dataset-specific and difficult to 
generalize across imaging centers. Moreover, 
their performance degraded sharply when 
confronted with heterogeneous tumor 
morphologies or low-contrast MRI sequences. 
The next transformative period emerged with 
the proliferation of statistical learning and 
probabilistic graphical models. Between 2005 
and 2013, the neuro-imaging community 
explored expectation-maximization (EM) 
algorithms, Gaussian mixture models (GMM), 
and Markov random fields (MRF) to introduce 
spatial coherence into segmentation and 
classification. These probabilistic approaches 
represented a shift from pixel-wise analysis 
toward context-aware modeling, enforcing local 
smoothness while preserving boundary fidelity. 
Bauer et al. (2012) combined MRFs with atlas-
based registration to achieve more consistent 
segmentation results across multiple MRI 
modalities [7]. Although probabilistic models 
improved structural continuity and reduced 
noise sensitivity, their reliance on handcrafted 
initial conditions and high computational 
complexity remained problematic for large-scale 
deployment. At this stage, automated detection 
pipelines typically involved multiple sequential 
modules preprocessing, feature extraction, 
classification each requiring meticulous 
parameter tuning, which constrained 
reproducibility. The advent of deep learning 
(DL) around 2014 marked a watershed moment 
in the automation of brain-tumor analysis. 
Convolutional Neural Networks (CNNs) 
introduced a hierarchical learning paradigm in 
which low-level convolutional filters captured 
edges and textures, intermediate layers 
represented shapes and structures, and deeper 
layers abstracted semantic patterns. Unlike 
handcrafted pipelines, CNNs learned features 
directly from the data through end-to-end 
optimization, effectively eliminating the need 
for manual feature engineering. Early 
implementations such as LeNet-5 and AlexNet, 
originally designed for natural-image 
classification, were adapted for medical 
applications. Pereira et al. (2016) applied deep 
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CNNs to the Brain Tumor Segmentation 
Challenge (BraTS) dataset, achieving Dice 
coefficients that outperformed all previous 
handcrafted methods. Shortly afterward, 
Havaei et al. (2017) proposed a dual-pathway 
CNN that combined local fine-detail and global 
contextual information, providing more 
accurate delineation of gliomas [8]. These 
pioneering efforts validated deep learning as a 
powerful paradigm for medical imaging and 
inspired a surge of research focused on CNN-
based brain-tumor segmentation, detection, 
and grading. Despite the tremendous success of 
CNNs, the first generation of deep 
architectures encountered several practical 
challenges. MRI datasets were relatively small 
compared with natural-image repositories such 
as ImageNet, making deep models prone to 
overfitting. Additionally, MRI scans are 
inherently multi-modal (T1, T2, FLAIR, 
contrast-enhanced T1c), and naïvely combining 
them without modality-specific preprocessing 
often produced sub-optimal representations. 
Researchers responded by introducing multi-
channel CNNs and encoder–decoder 
architectures such as U-Net and SegNet, which 
preserved spatial resolution and captured multi-
scale contextual information. U-Net, in 
particular, became the de facto standard for 
medical image segmentation due to its 
symmetric design and skip-connections that 
transfer fine spatial features to the decoding 
path. Variants such as Attention U-Net, 
Residual U-Net, and Dense U-Net further 
improved feature propagation and convergence 
stability. However, even these models struggled 
with intensity variations, class imbalance, and 
the interpretability gap that hindered clinical 
validation. Clinicians were often reluctant to 
trust a model’s prediction without 
understanding which image regions influenced 
the decision. As research matured, attention 
gradually shifted toward hybrid architectures 
that combined the interpretability and domain 
knowledge of handcrafted features with the 
abstraction capability of deep networks. Hybrid 
frameworks emerged as a natural response to 
the complementary strengths and weaknesses of 
traditional and deep methods. Rehman et al. 
(2021) developed a CNN-GLCM fusion model 
in which handcrafted statistical features were 
concatenated with deep convolutional 

embeddings before classification, resulting in a 
3–4 percent improvement in accuracy. Afshar 
et al. (2022) proposed a Capsule Network 
(CapsNet) incorporating Local Binary Pattern 
descriptors, achieving enhanced rotation 
invariance and feature stability. Li et al. (2023) 
extended this concept with a multi-scale ResNet 
hybrid CNN that extracted features from 
different receptive fields to handle tumors of 
varying size and shape. Zhang et al. (2024) 
integrated wavelet-based denoising into a deep 
CNN pipeline, demonstrating the advantage of 
combining spatial-frequency analysis with 
hierarchical learning. Collectively, these hybrid 
methods achieved accuracies exceeding 98 
percent on benchmark datasets such as BraTS 
and Figshare, underscoring their potential to 
bridge the gap between handcrafted precision 
and deep-learning adaptability. Parallel to the 
development of network architectures, 
significant progress occurred in preprocessing 
and image-enhancement methodologies, which 
form the foundation of any automated 
detection system. MRI scans are prone to 
intensity inhomogeneity, bias-field distortion, 
and random noise, all of which obscure tumor 
boundaries and confuse learning algorithms. 
Early studies employed Gaussian and median 
filtering for denoising, but these often blurred 
fine details. Anisotropic diffusion filtering and 
non-local means algorithms later provided 
superior noise suppression while preserving 
edges. Skull stripping algorithms such as Brain 
Extraction Tool (BET) and hybrid watershed 
approaches removed non-cerebral tissues, 
allowing focused tumor analysis. Contrast-
limited adaptive histogram equalization 
(CLAHE) improved local contrast, enhancing 
lesion visibility. The integration of these 
preprocessing techniques into deep-learning 
workflows proved crucial: Gupta et al. (2022) 
and Arora et al. (2023) showed that 
preprocessing pipelines could increase CNN 
accuracy by up to 5 percent by standardizing 
input distributions and improving convergence 
stability. Explainable artificial intelligence 
(XAI) has recently emerged as a defining 
dimension in the evolution of automated 
tumor detection [9]. As CNNs grew deeper and 
more complex, interpretability became a central 
concern. Gradient-weighted Class Activation 
Mapping (Grad-CAM), saliency maps, and 
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occlusion sensitivity analysis have become 
standard tools to visualize the discriminative 
regions influencing classification outcomes. 
These interpretability mechanisms transformed 
black-box models into partially transparent 
systems, allowing clinicians to validate whether 
the algorithm’s attention coincides with tumor 
regions. The inclusion of explainability has thus 
become not only a technical but also an ethical 

requirement, ensuring accountability in AI-
assisted diagnostics. The chronological 
progression of methodologies from rule-based 
segmentation to explainable hybrid deep-
learning frameworks is summarized in Table 2, 
which encapsulates the dominant approaches, 
their defining characteristics, and limitations 
across successive research eras. 
 

 
Table 2: Historical progression of automated brain-tumor detection methods. 

Era / 
Period 

Representative 
Approach 

Core Technique Strengths Limitations 

1990 – 
2000 

Classical image 
processing 

Thresholding, 
region growing, 
morphological filters 

Simple 
implementation; fast 
execution 

Noise-sensitive; poor 
generalization 

2000 – 
2010 

Handcrafted 
feature learning 

GLCM, LBP, 
wavelet features + 
SVM / RF 

Quantitative texture 
analysis; 
interpretable 

Requires manual 
feature design; dataset-
specific 

2010 – 
2015 

Statistical / 
probabilistic 
models 

GMM, MRF, EM 
segmentation 

Context-aware; 
improved 
smoothness 

Computationally 
heavy; limited 
scalability 

2015 – 
2020 

Deep CNN 
architectures 

AlexNet, VGG, U-
Net, ResNet 

Automatic feature 
learning; end-to-end 
training 

Data-hungry; limited 
interpretability 

2020 – 
2025 

Hybrid and 
Explainable AI 
frameworks 

CNN + GLCM / 
LBP fusion, Grad-
CAM visualization 

High accuracy; 
interpretable; noise-
resilient 

High computational 
demand; requires 
standardization 

 
The conceptual evolution of these frameworks 
is visualized in Figure 2, which depicts a 
continuous timeline illustrating how each 
methodological generation emerged as a direct 
response to the shortcomings of its 
predecessors. The diagram progresses from 

deterministic pixel-based segmentation to 
feature-driven statistical learning, then to end-
to-end deep networks, and finally to hybrid, 
interpretable architectures. The trajectory 
highlights an increasing trend toward 
automation, robustness, and clinical 
transparency. 
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Figure 2: Conceptual evolution of automated brain-tumor detection frameworks 

 
The evolution of automated brain-tumor 
detection has been characterized by a steady 
movement from explicit, handcrafted feature 
engineering toward implicit, data-driven 
representation learning, culminating in hybrid 
systems that combine both paradigms under the 
umbrella of explainable AI. Each historical 
phase has contributed foundational advances: 
early image-processing provided algorithmic 
intuition; handcrafted features introduced 
quantitative analysis; probabilistic models 
contributed spatial coherence; deep CNNs 
delivered hierarchical abstraction; and hybrid 
explainable architectures fused interpretability 
with precision. Yet, persistent issues remain, 
including the standardization of preprocessing 
protocols, generalization across multi-
institutional datasets, and balancing  

 
computational efficiency with model 
transparency. The present research builds 
directly upon this evolutionary trajectory by 
proposing a hybrid CNN-based framework that 
synthesizes these historical lessons integrating 
noise-resilient preprocessing, handcrafted-and-
deep feature fusion, and Grad-CAM-based 
interpretability to achieve superior diagnostic 
accuracy and clinical reliability. This 
evolutionary perspective not only situates the 
proposed study within a continuum of 
technological advancement but also 
demonstrates how each methodological 
generation has progressively converged toward 
the ideal of a fully automated, explainable, and 
clinically deployable neuro-imaging system. The 
following subsection extends this narrative by 
examining the development of deep-learning 
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architectures in greater detail, highlighting how 
modern CNN variants have transformed MRI-
based brain-tumor analysis into a data-centric, 
adaptive, and intelligent discipline. 
 
Deep Learning for MRI-Based Neuro-Imaging 
The introduction of deep learning into neuro-
imaging has revolutionized how medical data 
are interpreted, analyzed, and understood. In 
contrast to the explicit rule-based and 
handcrafted-feature approaches that dominated 
the first two decades of medical image analysis, 
deep learning provides a fundamentally 
different paradigm one in which the model 
automatically learns discriminative 
representations directly from data through 
hierarchical transformations. In neuro-
oncology, where brain-tumor detection and 
classification depend on complex structural and 
textural cues within MRI scans, this capability 
has proven transformative. Deep learning, and 
in particular Convolutional Neural Networks 
(CNNs), has established itself as the central 
methodology for MRI-based neuro-imaging 
tasks by enabling end-to-end feature extraction, 
noise-robust pattern recognition, and data-
driven generalization across patient 
populations. The fundamental advantage of 
deep learning lies in its representation learning 
ability its capacity to discover multiple levels of 
abstraction within imaging data without 
manual intervention [10]. CNNs emulate the 
hierarchical structure of the human visual 
cortex, employing layers of convolutional filters 
to extract progressively higher-level features. 
The early layers capture low-level elements such 
as edges, corners, and textures, whereas deeper 
layers encode more complex shapes and 
semantic patterns relevant to tumor localization 
and classification. Pooling operations reduce 
spatial dimensions while preserving essential 
contextual information, and nonlinear 
activations such as Rectified Linear Unit 
(ReLU) introduce nonlinearity that enables the 
network to model intricate decision 
boundaries. This multi-scale, compositional 
representation has enabled CNNs to 
outperform traditional classifiers across 
virtually all medical imaging modalities, 
including MRI, CT, and PET scans. The 
pioneering deep learning architectures for 
medical image classification LeNet, AlexNet, 

and VGGNet laid the groundwork for modern 
neuro-imaging applications. AlexNet’s victory 
in the 2012 ImageNet competition 
demonstrated the power of large convolutional 
architectures trained with GPU acceleration 
and rectified nonlinearities. Subsequent 
architectures, such as GoogLeNet (Inception) 
and ResNet, further advanced this paradigm by 
introducing inception modules and residual 
connections, respectively. These innovations 
addressed key limitations in earlier networks: 
computational inefficiency and vanishing 
gradients in deep hierarchies. In the context of 
brain-tumor detection, such architectures 
allowed the construction of deeper, more 
expressive models capable of learning spatial 
dependencies between voxels across multiple 
MRI modalities. One of the earliest successful 
applications of CNNs to brain-tumor analysis 
was presented by Pereira et al. (2016), who 
trained a deep CNN on multi-modal MRI data 
for glioma segmentation. The network achieved 
high Dice similarity coefficients and exhibited 
superior generalization compared with support 
vector machines and random forests. Havaei et 
al. (2017) further enhanced CNN performance 
by designing a dual-pathway architecture, where 
one branch processed fine-grained local details 
and the other captured global contextual 
information [11]. This structure mirrored the 
way radiologists integrate local lesion 
information with overall anatomical context 
during diagnosis. The success of these early 
CNN frameworks established a foundational 
proof of concept: deep networks could 
autonomously learn meaningful 
representations of brain anatomy and 
pathology directly from raw MRI data. The 
subsequent proliferation of deep architectures 
in neuro-imaging can be attributed to the 
encoder–decoder revolution, epitomized by the 
introduction of U-Net. Proposed by 
Ronneberger et al. (2015), U-Net utilized a 
symmetric encoder–decoder topology with skip 
connections that preserved fine spatial details 
lost during downsampling. This innovation 
made U-Net particularly suitable for medical 
segmentation tasks that demand precise 
boundary delineation, such as differentiating 
tumor cores, necrotic regions, and edema. Its 
success led to an entire family of architectures 
Attention U-Net, Residual U-Net, and Dense 
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U-Net which incorporated attention gates, 
residual mapping, and dense connectivity to 
enhance gradient flow and feature reuse. In 
brain-tumor detection, these models achieved 
unprecedented segmentation accuracy, often 
exceeding Dice coefficients of 90 percent on the 
BraTS benchmark datasets. The encoder–
decoder paradigm remains a dominant design 
principle for volumetric MRI analysis, with 3D 
variants like 3D U-Net and V-Net extending the 
framework to volumetric input for capturing 
inter-slice dependencies [12]. As deep learning 
matured, researchers explored multi-modal and 
multi-pathway networks that could 
simultaneously process different MRI 
modalities T1, T2, FLAIR, and contrast-
enhanced T1c to improve diagnostic precision. 
Each modality provides complementary 
information: T1 highlights anatomical detail, 
T2 accentuates fluid-filled regions, and FLAIR 
suppresses cerebrospinal fluid signals to reveal 
edema. Integrating these modalities within a 
unified deep-learning architecture enables the 
model to learn cross-modality correlations that 
enhance its diagnostic sensitivity. For example, 
Kamnitsas et al. (2017) proposed DeepMedic, a 
3D CNN that processes MRI patches at 
multiple scales, integrating both fine-resolution 
and coarse contextual information [13]. 
DeepMedic introduced 3D convolutions and 
dense inference strategies, achieving state-of-
the-art performance on the BraTS challenge. 
This model exemplified how spatial context and 
multi-modality integration could dramatically 
improve tumor segmentation accuracy. 
Another important milestone in the evolution 
of deep learning for neuro-imaging was the 
introduction of transfer learning. In medical 
imaging, the scarcity of labeled data often 
restricts the training of very deep networks. 
Transfer learning addresses this limitation by 
leveraging weights pre-trained on large-scale 
datasets like ImageNet and fine-tuning them for 
medical applications. Pre-trained CNNs such as 
VGG-16, ResNet-50, and Inception-V3 have 
been successfully adapted for tumor 
classification tasks, where the lower 
convolutional layers serve as general feature 
extractors and the higher layers are retrained to 
capture domain-specific nuances. Paul et al. 
(2021) demonstrated that transfer learning 
using ResNet-50 significantly improved glioma 

classification accuracy on small MRI datasets, 
achieving over 98 percent accuracy while 
reducing training time. This approach has since 
become a standard practice in scenarios with 
limited annotated medical data, enabling the 
use of complex architectures without 
overfitting. In recent years, researchers have 
expanded deep learning paradigms beyond 
conventional CNNs, introducing transformer-
based models and graph neural networks 
(GNNs) to neuro-imaging. Vision Transformers 
(ViT), first proposed by Dosovitskiy et al. 
(2020), replace convolutional kernels with self-
attention mechanisms that model long-range 
spatial dependencies. In the context of MRI, 
transformers can capture global relationships 
between distant anatomical regions, offering a 
holistic representation of brain structure. 
Studies such as Zhang et al. (2023) have 
demonstrated that hybrid CNN–Transformer 
models outperform purely convolutional 
architectures in capturing complex inter-region 
dependencies [14]. Similarly, Graph 
Convolutional Networks (GCNs) have been 
used to represent brain connectivity as a graph 
structure, where nodes correspond to regions of 
interest and edges encode spatial or functional 
relationships. These emerging architectures 
extend deep learning into higher-order 
representations of neuro-imaging data, opening 
new avenues for explainable and context-aware 
tumor analysis. Parallel to architectural 
innovation, deep learning research in MRI-
based neuro-imaging has also emphasized data 
preprocessing, normalization, and 
augmentation as critical components of model 
performance. MRI data often suffer from 
variability in voxel size, intensity scale, and 
acquisition parameters. Normalization 
methods, such as z-score and histogram 
matching, standardize intensities across 
subjects, while data augmentation (rotation, 
flipping, translation, and elastic deformation) 
increases data diversity and mitigates 
overfitting. Furthermore, noise reduction 
through anisotropic diffusion filtering and bias-
field correction enhances tissue contrast, 
allowing the network to focus on diagnostically 
relevant features. Arora et al. (2023) showed 
that incorporating such preprocessing steps 
improved CNN convergence stability and 
accuracy by 3–5 percent, reaffirming the synergy 
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between image quality enhancement and deep 
model performance. The progressive 
improvement of deep architectures for MRI-
based neuro-imaging is summarized in Table 3, 
which lists landmark contributions, 
architectures used, datasets, and key 
performance outcomes. The table demonstrates 

how model complexity, preprocessing 
sophistication, and multi-modal integration 
collectively contribute to accuracy 
improvements over time. 
 
 

 
Table 3: Summary of landmark deep-learning architectures for MRI-based brain-tumor detection and 
classification. 

Author & 
Year 

Architecture / 
Model Type 

Dataset 
Used 

Modalities Accuracy / 
Dice (%) 

Distinctive Feature / 
Limitation 

Pereira et al. 
(2016) 

Deep CNN (2D 
patches) 

BraTS 
2015 

T1, T2, 
FLAIR 

89.3 Dice First CNN-based 
segmentation model 
for gliomas 

Havaei et al. 
(2017) 

Dual-pathway CNN BraTS 
2016 

T1, T2, 
FLAIR 

91.2 Dice Combines local and 
global context 

Kamnitsas et 
al. (2017) 

DeepMedic (3D 
CNN) 

BraTS 
2016 

Multi-
modal 

92.6 Dice Multi-scale 3D 
context integration 

Ronneberger 
et al. (2018) 

U-Net / Encoder–
Decoder 

ISLES / 
BraTS 

T1, FLAIR 93.0 Dice Symmetric skip 
connections preserve 
details 

Li et al. (2020) Residual U-Net BraTS 
2018 

Multi-
modal 

94.5 Dice Residual connections 
improve convergence 

Paul et al. 
(2021) 

Transfer-learning 
ResNet-50 

Private 
MRI 

T1, T2 98.0 
Accuracy 

Pre-trained on 
ImageNet; fast 
convergence 

Zhang et al. 
(2023) 

CNN–Transformer 
Hybrid 

BraTS 
2021 

Multi-
modal 

97.4 Dice Captures long-range 
dependencies 

Proposed 
Study (2025) 

Hybrid CNN with 
handcrafted + deep 
feature fusion 

BraTS, 
Figshare 

T1, T2, 
FLAIR 

99.1 
Accuracy 

Unified 
preprocessing, feature 
fusion, and 
interpretability 

 
The architectural progression captured in Table 
4 illustrates a clear trend: the integration of 
structural complexity, interpretability, and 
multi-modal data fusion leads to continuous 
performance improvement. While early CNNs 
relied solely on convolutional hierarchies, 
contemporary models exploit hybridization, 
attention mechanisms, and handcrafted-deep 
feature synergy to approach near-human 
diagnostic accuracy. Furthermore, the 
consistent inclusion of interpretability 
mechanisms such as Grad-CAM, SHAP 
(SHapley Additive exPlanations), and Layer- 

 
wise Relevance Propagation (LRP) underscores 
the field’s growing emphasis on transparency 
and clinical trust. The conceptual evolution of 
deep-learning architectures for MRI-based 
neuro-imaging is visually represented in Figure  
3, which outlines the transition from early 
CNN models to hybrid transformer-based 
frameworks. The figure emphasizes how 
architectural complexity, multi-modal fusion, 
and interpretability converge toward clinically 
deployable systems. 
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Figure 3: Conceptual evolution of deep-learning architectures for MRI-based neuro-imaging.

 
Although deep learning has become 
indispensable in MRI-based neuro-imaging, 
several persistent challenges continue to shape 
ongoing research. Data scarcity remains the 
foremost obstacle; collecting large, annotated 
datasets is resource-intensive and time-
consuming due to the requirement for expert 
manual segmentation. This has prompted 
exploration of semi-supervised, self-supervised, 
and federated learning paradigms, which utilize 
unlabeled or distributed data to enhance model 
generalization. Federated learning, in 
particular, has gained traction in clinical 
environments where data privacy is paramount. 
It enables collaborative model training across 
institutions without centralized data sharing, 
ensuring compliance with patient 
confidentiality regulations. Another pressing 
challenge is domain adaptation, where models 
trained on one dataset fail to generalize to 
another due to scanner differences,  
 

 
demographic diversity, or acquisition 
parameters. Techniques such as adversarial 
training, normalization transfer, and meta-
learning have been proposed to mitigate this 
issue [15]. Moreover, the computational burden 
associated with large 3D CNNs and 
transformer models remains a limiting factor 
for real-time clinical use. Lightweight networks, 
model pruning, and quantization strategies are 
increasingly being adopted to strike a balance 
between performance and computational 
feasibility. In parallel, the emergence of 
explainable deep-learning frameworks has 
profoundly influenced neuro-imaging research. 
Grad-CAM visualizations, attention heatmaps, 
and region-attribution techniques have 
empowered clinicians to interpret and validate 
model predictions. Studies by Arora et al. 
(2023) and Zhang et al. (2024) demonstrated 
that incorporating explainability not only 
improved user confidence but also facilitated 
model refinement by revealing regions of 
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diagnostic importance. As explainable AI 
matures, it is poised to redefine the relationship 
between human expertise and algorithmic 
intelligence, transforming deep-learning 
systems from opaque predictors into 
transparent diagnostic collaborators. 
 
Hybrid CNN Architectures with Sequential 
and Parallel Learning Stages: 
The continuous evolution of deep learning in 
neuro-imaging has given rise to a new 
generation of systems that transcend the 
boundaries of conventional convolutional 
models. These frameworks commonly termed 
hybrid or multi-stage architectures represent a 
fusion of data-driven feature learning and 
handcrafted domain knowledge. Rather than 
relying exclusively on CNN-derived features, 
hybrid models integrate texture, statistical, or 
frequency-domain descriptors with deep 
hierarchical representations to achieve higher 
diagnostic precision, generalization, and 
interpretability. The emergence of these 
architectures marks the third major phase in 
automated brain-tumor detection, following 
handcrafted-feature models and end-to-end 
CNNs. Their defining characteristic is the 
synergistic exploitation of complementary 
information: handcrafted features capture local 
intensity and texture variations, whereas deep 
features encode contextual and semantic cues. 
This integration yields a richer, 
multidimensional representation of MRI data, 
enabling more accurate classification and 
robust performance across heterogeneous 
clinical conditions. The conceptual motivation 
behind hybrid architectures originates from the 
recognition that handcrafted features still retain 
diagnostic value. Classical texture metrics such 
as the Gray-Level Co-occurrence Matrix 
(GLCM), Local Binary Patterns (LBP), wavelet 
coefficients, and Gabor filters quantify micro-
level image structures, which are particularly 
effective for differentiating tissue textures, such 
as necrotic cores, edema, and enhancing tumor 
rims. These fine-grained features often 
correspond to the visual patterns that 
radiologists rely on during clinical 
interpretation [16]. Deep CNNs, by contrast, 
excel at discovering complex abstract 
representations across large receptive fields but 
may overlook subtle localized cues when trained 

on limited data. Combining both domains 
through hybridization therefore provides a 
dual-perspective analysis linking human-
interpretable texture statistics with machine-
learned semantic abstractions. The earliest 
examples of hybrid deep-learning frameworks 
emerged around 2018–2020, when researchers 
began concatenating handcrafted feature 
vectors with CNN embeddings prior to 
classification. One of the pioneering 
approaches was introduced by Rehman et al. 
(2021), who developed a CNN–GLCM model 
that extracted statistical co-occurrence metrics 
from MRI images and fused them with features 
from the penultimate CNN layer. This model 
achieved a classification accuracy of 96.8 
percent on the Figshare MRI dataset, 
outperforming purely convolutional baselines 
by a margin of 3–4 percent. The study 
demonstrated that handcrafted texture features 
contributed discriminative information not 
captured by CNN filters. Shortly afterward, 
Afshar et al. (2022) proposed a Capsule 
Network (CapsNet) combined with LBP 
descriptors [17]. The Capsule framework, 
which models hierarchical relationships 
between spatial entities, provided robustness to 
rotation and orientation variations, while LBP 
added fine texture contrast. Their hybrid design 
achieved a 97.3 percent accuracy on BraTS 
2020 data, revealing the efficacy of multi-level 
feature fusion in mitigating data scarcity and 
overfitting. Further innovations expanded 
hybridization into the multi-stage paradigm, in 
which feature extraction, enhancement, and 
classification are separated into sequential 
modules optimized for complementary 
objectives. For example, Li et al. (2023) 
designed a multi-scale ResNet hybrid CNN that 
simultaneously captured features at different 
receptive fields, addressing the variation in 
tumor size and shape within MRI scans. Each 
scale generated an independent feature map, 
later fused through channel concatenation. 
This architecture achieved 98.1 percent 
accuracy on private multi-institutional MRI 
datasets, demonstrating improved cross-dataset 
adaptability. Zhang et al. (2024) advanced the 
idea further by embedding wavelet-based 
denoising into a deep CNN pipeline, effectively 
combining spatial-frequency decomposition 
with learned representations. The inclusion of 
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wavelet analysis enhanced the network’s ability 
to isolate lesion boundaries and suppress 
irrelevant background information, yielding 
98.4 percent accuracy and stronger 
generalization to unseen data. In parallel, 
attention mechanisms and feature-selection 
algorithms have been incorporated into hybrid 
systems to emphasize diagnostically relevant 
features. Adaptive Feature Selection Networks 
(AFSN) and Attention Fusion Modules (AFM) 
dynamically weigh handcrafted and deep 
features based on their contribution to 
classification confidence. For instance, Wang et 
al. (2023) implemented an attention-guided 
fusion CNN using GLCM + CNN streams, 
achieving notable performance improvements 
and reducing computational redundancy [18]. 
These designs embody the principle that not all 
features contribute equally attention 
mechanisms prioritize those most informative 
for tumor localization and classification, 
enhancing both accuracy and interpretability. 
Another direction within hybridization is the 
integration of frequency- and texture-domain 
transforms into CNN pipelines. Techniques 
such as Discrete Wavelet Transform (DWT), 
Discrete Cosine Transform (DCT), and Fourier 
Domain Filtering have been employed to 
preprocess images before convolutional 
encoding. By representing data in multiple 
spectral bands, these models can capture micro-
texture variations invisible in the spatial 
domain. Hybrid Wavelet-CNN architectures, 
for example, use wavelet sub-bands as multi-
channel CNN inputs, yielding representations 
resilient to illumination and intensity shifts. 
Similarly, multi-resolution LBP histograms 
fused with CNN activations provide robust 
encoding of both global and local image 
patterns. Collectively, these advances reveal the 
versatility of hybrid architectures in 
accommodating diverse imaging challenges, 
from noise suppression to multi-modal 
integration. Hybridization is not limited to 
feature fusion; it also extends to model-level or 
decision-level fusion, where multiple deep 
networks contribute predictions that are 
aggregated through ensemble strategies. 
Decision-level hybrids average or weight the 
outputs of different architectures such as 
ResNet, DenseNet, and Inception to enhance 

stability [19]. Model-level hybrids, by contrast, 
merge intermediate feature maps from multiple 
architectures before classification. Both fusion 
levels leverage the diversity of network 
perspectives to achieve higher accuracy and 
robustness. Ensemble-hybrid systems have 
reported accuracies exceeding 98 percent on 
BraTS datasets, validating the benefit of 
architectural diversity. Beyond CNNs, 
transformer-based hybrids have recently 
emerged as the state-of-the-art paradigm. These 
frameworks integrate convolutional encoders 
with transformer decoders that employ self-
attention to model long-range dependencies 
across MRI slices. The CNN branch captures 
localized spatial textures, while the transformer 
branch captures global structural relationships, 
providing a holistic understanding of brain 
anatomy. Hybrid CNN–Transformer 
architectures introduced by Zhang et al. (2023) 
achieved 97.4 percent Dice similarity on BraTS 
2021, surpassing classical CNNs in both 
segmentation precision and cross-modality 
generalization [20]. These transformer-based 
hybrids represent the latest stage in the 
hybridization continuum combining 
convolutional locality with attention-based 
global reasoning. The integration of explainable 
AI (XAI) modules further distinguishes modern 
hybrid systems from earlier black-box CNNs. 
Methods such as Gradient-weighted Class 
Activation Mapping (Grad-CAM), Integrated 
Gradients, and SHAP values are routinely 
embedded into hybrid pipelines to visualize 
model attention and validate clinical relevance. 
By overlaying activation maps on MRI slices, 
these frameworks demonstrate which regions 
drive classification decisions, thereby 
enhancing radiologists’ trust. Studies have 
shown that interpretable hybrids not only gain 
clinical acceptance but also improve model 
performance by reinforcing attention on 
diagnostically significant regions during 
training. The principal advancements in hybrid 
and multi-stage architectures for brain-tumor 
detection between 2020 and 2025 are 
summarized in Table 4, which details key 
methodologies, datasets, performance metrics, 
and notable contributions. 
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Table 4: Comparative summary of hybrid and multi-stage deep-learning architectures for brain-tumor 
detection. 

Author & 
Year 

Hybrid 
Architecture / 

Method 

Fusion Type Dataset 
Used 

Accuracy 
/ Dice (%) 

Distinctive 
Contribution / 

Limitation 
Rehman et 
al. (2021) 

CNN + GLCM 
hybrid 

Feature-level Figshare 
MRI 

96.8 
Accuracy 

Introduced 
statistical CNN 
fusion; risk of 
overfitting small 
data 

Afshar et 
al. (2022) 

CapsNet + LBP 
texture fusion 

Feature-level BraTS 
2020 

97.3 
Accuracy 

Enhanced rotation 
invariance; 
computational 
overhead 

Li et al. 
(2023) 

Multi-scale ResNet 
hybrid CNN 

Model-level Private 
MRI 

98.1 
Accuracy 

Improved multi-
scale learning; 
complex training 

Wang et 
al. (2023) 

Attention-guided 
Fusion CNN 

Attention-
weighted feature 
fusion 

BraTS 
2021 

98.5 
Accuracy 

Dynamic weighting 
of handcrafted + 
deep features 

Zhang et 
al. (2024) 

Wavelet-Denoising 
CNN hybrid 

Pre-fusion 
frequency domain 

BraTS 
2021 

98.4 
Accuracy 

Noise resilient; 
moderate training 
cost 

Proposed 
Study 
(2025) 

Hybrid CNN 
integrating GLCM 
+ LBP with Grad-
CAM 
explainability 

Unified multi-
stage feature and 
interpretability 
fusion 

BraTS, 
Figshare 

99.1 
Accuracy 

Comprehensive 
preprocessing + 
feature fusion + XAI 
integration 

 
The comparison presented in Table 5 illustrates 
a clear evolution from simple concatenation-
based hybrids toward more sophisticated 
attention-driven, frequency-domain, and 
transformer-enhanced architectures. It also 
underscores the growing importance of 
explainability as a structural not auxiliary 
component of hybrid design. As deep models 
approach clinical performance thresholds, 
interpretability and reproducibility are 
emerging as equally vital evaluation criteria 
alongside accuracy and sensitivity. The 
generalized workflow of a hybrid multi-stage 
deep-learning framework is illustrated in Figure 
4, which conceptually depicts how handcrafted 
and deep features interact within a unified 
diagnostic pipeline. The figure comprises three 
primary stages: preprocessing, dual-stream 
feature extraction, and integrated classification. 
During preprocessing, MRI  

 
images undergo intensity normalization, bias-
field correction, skull stripping, and contrast 
enhancement to produce standardized inputs 
[21]. In the feature-extraction stage, the 
handcrafted branch computes texture 
descriptors such as GLCM and LBP, while the  
deep branch processes the same image through 
stacked convolutional layers to derive deep 
embeddings. The outputs from both branches 
are fused either by concatenation or attention-
weighted integration and passed to a dense 
classification layer. An interpretability module 
(Grad-CAM) is applied to the final 
convolutional outputs to visualize regions 
influencing the classification decision. This 
design mirrors the cognitive workflow of 
radiologists, who combine quantitative texture 
observation with contextual understanding 
when interpreting MRI scans. 
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Figure 4: Conceptual schematic of a hybrid multi-stage deep-learning framework for brain-tumor 

detection.
 
Beyond architecture and interpretability, 
hybrid frameworks also contribute to 
addressing two persistent challenges in neuro-
imaging: data imbalance and limited 
generalization. Many publicly available datasets 
contain disproportionate representation of 
specific tumor grades or types, causing bias in 
purely data-driven models. Handcrafted 
features, by encoding statistical properties 
independent of sample frequency, partially 
compensate for this imbalance, ensuring that 
rare tumor categories remain distinguishable. 
Similarly, hybrid systems demonstrate 
enhanced transferability across scanners and 
institutions, as handcrafted features are less 
affected by intensity scaling or acquisition 
parameters. The inclusion of handcrafted 
streams therefore acts as an implicit domain 
regularizer, improving the stability of deep 
models when exposed to diverse data sources. 
Another crucial aspect of multi-stage 
hybridization is optimization and training 
synergy. Feature-level fusion demands 
alignment in feature dimensionality, scale, and 
normalization, while model-level fusion 
necessitates parallel gradient synchronization 
across branches [22]. Researchers have adopted 
optimization strategies such as adaptive 
learning-rate scheduling, batch normalization 
alignment, and multi-objective loss functions to 
maintain balanced training between 
handcrafted and deep components. Hybrid 
models often employ composite loss functions 
combining cross-entropy with texture-similarity  
 

 
or contrastive losses to ensure that both feature 
domains contribute meaningfully to learning. 
This multi-objective optimization not only 
enhances classification performance but also 
stabilizes convergence in heterogeneous feature 
spaces. The integration of hybrid models into 
clinical decision-support systems (CDSS) has 
begun to show tangible benefits in diagnostic 
workflows. By combining automated 
classification with interpretable heatmaps, 
hybrid frameworks assist radiologists in 
validating algorithmic suggestions and 
identifying subtle lesions that might otherwise 
be overlooked. Clinical pilot studies have 
indicated that radiologists using AI-augmented 
interfaces exhibit improved diagnostic 
confidence and reduced reading time. 
Moreover, the modularity of hybrid frameworks 
facilitates adaptation to other neuro-imaging 
tasks such as multiple-sclerosis lesion detection, 
Alzheimer’s progression tracking, and stroke-
lesion segmentation, underscoring their 
generalizability beyond oncology. Despite these 
achievements, hybrid and multi-stage 
architectures face several challenges that 
continue to inspire ongoing research. Chief 
among them is computational complexity [23]. 
The parallel processing of handcrafted and 
deep features increases memory and time 
requirements, necessitating optimization 
through lightweight CNN backbones, 
dimensionality reduction, or knowledge-
distillation techniques. Standardization is 
another unresolved issue: different studies 
employ diverse preprocessing pipelines, feature 
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descriptors, and fusion strategies, complicating 
comparative benchmarking. Furthermore, 
while hybrid models improve interpretability 
relative to black-box CNNs, the combined 
feature spaces are still difficult to visualize 
intuitively, motivating the exploration of latent-
space projection and explainable fusion 
techniques. Nevertheless, the convergence of 
handcrafted and deep representations marks a 
decisive step toward clinically viable AI. The 
hybrid paradigm embodies the broader 
movement from opaque automation toward 
collaborative intelligence, in which machine 
algorithms augment rather than replace human 
expertise. In the context of neuro-imaging, this 
means leveraging computational precision to 
complement the radiologist’s diagnostic 
intuition. Hybrid systems not only bridge the 
interpretability gap but also contribute to 
scientific transparency by providing 
quantitative, reproducible pathways for 
understanding how image information 
translates into diagnostic inference. 
 
Methodology: 
The methodological design of this study adopts 
a fully integrated, end-to-end deep-learning 
workflow that aims to establish a reproducible, 
interpretable, and high-accuracy hybrid 
framework for brain-tumor detection and 
classification using Magnetic Resonance 
Imaging (MRI). This methodological 
framework is deliberately structured to bridge 
the gap between conventional image-processing 
approaches and modern data-driven paradigms 
by combining handcrafted feature engineering 
with automated deep representation learning 
within a unified hybrid architecture. The 
central motivation behind this design lies in 
capturing both the statistical regularities 
inherent in tissue textures and the high-level 
semantic patterns that are characteristic of 
pathological regions, enabling the model to 
deliver precise, explainable, and clinically 
relevant diagnostic outcomes. The proposed 
hybrid system integrates two complementary 
learning paradigms handcrafted and deep 
feature extraction through a CNN-based multi-
branch architecture that processes and fuses 
information from multiple MRI modalities. 
The workflow initiates with a systematic and 
standardized data acquisition process, where 

high-resolution MRI scans are collected and 
preprocessed to correct for scanner-induced 
artifacts, intensity non-uniformities, and 
contrast inconsistencies. A comprehensive 
preprocessing pipeline is employed, including 
N4 bias-field correction, skull stripping, 
anisotropic diffusion filtering, and Contrast-
Limited Adaptive Histogram Equalization 
(CLAHE), to ensure that the images are 
denoised, bias-corrected, and visually 
enhanced. This preprocessing not only 
harmonizes intensity distributions across 
datasets but also amplifies the visibility of tumor 
boundaries and intracranial textures that are 
critical for subsequent learning stages [24]. The 
resulting bias-corrected and contrast-optimized 
MRI volumes from multiple modalities such as 
T1-weighted, T2-weighted, FLAIR, and 
contrast-enhanced T1c are thus transformed 
into consistent, high-quality representations 
suitable for robust model training and analysis. 
Following preprocessing, the workflow 
proceeds into a dual-stream feature-extraction 
phase designed to harness both handcrafted 
and deep features in parallel. The first stream 
employs statistical and textural feature 
computation using Gray-Level Co-occurrence 
Matrix (GLCM) and Local Binary Patterns 
(LBP), which capture essential spatial 
dependencies and intensity variations across 
brain tissues. GLCM quantifies the second-
order texture statistics such as contrast, entropy, 
correlation, and homogeneity that describe how 
frequently pixel intensity pairs occur within a 
defined spatial relationship. These features are 
particularly effective for identifying the 
heterogeneity of tumor regions, where 
abnormal tissue patterns differ markedly from 
the surrounding parenchyma. 
Complementarily, LBP encodes micro-level 
textural details by representing local intensity 
transitions around each voxel or pixel, yielding 
a binary descriptor that is invariant to 
illumination and rotation [25]. Together, 
GLCM and LBP provide handcrafted 
descriptors that reflect low-level texture 
irregularities and tissue granularity, serving as a 
domain-informed foundation for subsequent 
high-level learning. In the second stream, the 
deep-learning branch leverages the powerful 
feature-learning capability of Convolutional 
Neural Networks (CNNs) to capture 
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hierarchical and semantic representations of 
brain-tumor structures. This CNN branch 
consists of multiple layers of convolution, batch 
normalization, ReLU activation, and max-
pooling operations that progressively transform 
the input MRI slices into a series of increasingly 
abstract feature maps. The convolutional 
kernels automatically learn discriminative 
filters that respond to salient tumor features 
such as shape, edge contrast, and structural 
asymmetry, while pooling layers provide 
translational invariance and reduce 
computational complexity. The resulting deep 
features encapsulate global and contextual 
information that complements the local texture 
cues captured by the handcrafted branch. Once 
extracted, both handcrafted and deep features 
are unified through an adaptive feature-fusion 
mechanism that enables the model to leverage 
the strengths of each representation type [26]. 
This fusion process is implemented using a 
weighted concatenation strategy, where the 
relative contributions of handcrafted and deep 
features are dynamically balanced through an 
empirically optimized weighting coefficient. 
The outcome is a comprehensive 
multidimensional feature representation that 
captures both fine-grained intensity variations 
and high-level semantic abstractions, yielding a 
holistic understanding of tumor morphology 
and pathology. The fused feature vector is 
subsequently passed through a series of fully 
connected dense layers, where nonlinear 
transformations and dropout regularization are 
applied to enhance generalization and prevent 
overfitting. Optimization of the model 
parameters is conducted using the Adam 
optimization algorithm, which combines the 
advantages of adaptive learning rates and 
momentum-based updates to accelerate 
convergence while maintaining stability. The 
model’s performance is rigorously validated 
using a five-fold cross-validation protocol, 
ensuring that its predictive accuracy and 
robustness are consistently evaluated across 
diverse data partitions. This validation 
approach mitigates the risk of overfitting and 
ensures that the reported results reflect true 
generalization rather than dataset-specific 
tuning. Beyond accuracy and robustness, the 
proposed methodology emphasizes 
interpretability as a core component of the 

analytical pipeline. To achieve this, Gradient-
weighted Class Activation Mapping (Grad-
CAM) is employed to visualize and interpret the 
spatial regions within MRI scans that 
contribute most strongly to the model’s 
classification decisions. Grad-CAM produces 
class-discriminative heatmaps that overlay the 
original MRI images, highlighting tumor 
locations and verifying that the network’s 
attention aligns with medically relevant 
structures [27]. This interpretability mechanism 
provides radiologists and researchers with 
transparent visual evidence of the model’s 
decision-making process, thereby strengthening 
clinical trust and enhancing diagnostic 
accountability. The entire methodology 
represents a cohesive integration of data 
preprocessing, handcrafted and deep feature 
extraction, adaptive fusion, model 
optimization, and interpretability analysis. Each 
component is interlinked to ensure that 
diagnostic precision is achieved without 
compromising computational efficiency or 
transparency. By uniting traditional domain-
informed texture descriptors with advanced 
CNN-based feature abstraction, this hybrid 
deep-learning framework establishes a new 
standard for reproducible, explainable, and 
clinically aligned brain-tumor classification 
using MRI data. It ensures that the resulting 
system not only delivers superior predictive 
performance but also meets the stringent 
requirements of interpretability and reliability 
essential for real-world neuro-imaging 
applications. 
 
5.1-    MRI Data Sources for Neuro-Imaging 
Analysis: 
The performance and generalizability of the 
proposed hybrid deep-learning framework were 
evaluated using publicly available, standardized 
MRI datasets that serve as benchmarks in the 
neuro-imaging research community specifically, 
the Brain Tumor Segmentation (BraTS) 2021 
dataset and the Figshare brain-tumor dataset. 
The selection of these two datasets was guided 
by their complementarity in terms of modality 
coverage, tumor diversity, and data annotation 
quality. The BraTS dataset provides a 
comprehensive, multi-modal, and multi-
institutional collection of volumetric MRI scans 
curated under controlled imaging protocols, 
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whereas the Figshare dataset offers a diverse 
corpus of 2-D MRI slices encompassing a variety 
of tumor morphologies and anatomical regions. 
Together, these datasets ensure that the 
proposed framework is trained and validated 
across a wide spectrum of tumor characteristics, 
scanner configurations, and acquisition 
environments, thus enhancing its robustness 
and clinical applicability. The BraTS 2021 
dataset, maintained under the International 
Medical Image Computing and Computer-
Assisted Intervention (MICCAI) consortium, 
contains multi-modal MRI volumes from 
multiple institutions, acquired using different 
MRI scanners and protocols. Each case includes 
four distinct modalities T1-weighted, T2-
weighted, Fluid-Attenuated Inversion Recovery 
(FLAIR), and contrast-enhanced T1c sequences 
that collectively provide complementary 
diagnostic perspectives on tumor structure and 
surrounding edema. Each subject volume 
consists of 155 axial slices with a standardized 
in-plane resolution of 240 × 240 pixels and a 
slice thickness of 1 mm [28]. The dataset 
comprises both low-grade glioma (LGG) and 
high-grade glioma (HGG) categories, annotated 
by expert neuro-radiologists who delineated 
enhancing tumor regions, necrotic cores, and 
peritumoral edema. These detailed, pixel-level 
annotations facilitate precise supervised 
training and quantitative evaluation of 
segmentation and classification models. The 
heterogeneity of the BraTS data spanning 
multiple hospitals, MRI machines, and 
acquisition conditions ensures that the 
proposed model encounters realistic inter-
scanner variability and patient-specific diversity, 
enabling it to generalize effectively across 
unseen data. The Figshare brain-tumor dataset, 
in contrast, provides a large collection of high-
quality 2-D T1-weighted MRI slices categorized 
into three major tumor classes: glioma, 
meningioma, and pituitary. It consists of 3,064 
images derived from different subjects, where 
each image corresponds to a clinically validated 
MRI scan. Unlike the volumetric BraTS data, 
the Figshare dataset focuses on single-slice 
classification tasks, enabling a complementary 
evaluation of the framework’s performance in 
slice-wise tumor recognition scenarios. This 
dataset is particularly valuable for training the 
model on diverse tumor appearances and 

anatomical variations, allowing for broader 
representational learning across pathological 
types. The inclusion of multiple tumor 
categories and their distinct structural 
appearances such as the diffuse infiltration of 
gliomas, the well-circumscribed borders of 
meningiomas, and the sellar location of 
pituitary adenomas provides a challenging yet 
realistic foundation for robust model training. 
All datasets were preprocessed to remove 
identifiable metadata and patient information 
in full compliance with ethical and privacy 
guidelines. Each MRI volume was anonymized 
prior to analysis, ensuring that no personal 
identifiers were preserved in the data headers or 
image content. Since both BraTS and Figshare 
datasets are publicly available for research 
under institutional review board (IRB)–
approved protocols, no additional ethical 
clearance was required for this study. 
Nevertheless, all analyses were conducted in 
accordance with the principles outlined in the 
Declaration of Helsinki and the FAIR 
(Findable, Accessible, Interoperable, and 
Reusable) data-usage standards to promote 
scientific reproducibility and responsible data 
handling [29]. For training, validation, and 
testing, the combined dataset was partitioned 
using a five-fold cross-validation strategy. This 
protocol ensures that every sample participates 
in both training and validation phases across 
multiple runs, thereby reducing sampling bias 
and improving statistical robustness. Each fold 
preserves the class distribution of the original 
dataset through stratified sampling, ensuring 
that all tumor types are proportionally 
represented in each subset. The overall division 
ratios were configured as 70 % for training, 15 
% for validation, and 15 % for testing, 
balancing the trade-off between data sufficiency 
for learning and data reservation for 
independent evaluation [30]. Additionally, 
synthetic augmentation was applied to the 
training set including rotation, translation, 
flipping, and scaling to mitigate class imbalance 
and enhance generalization across anatomical 
variations and scanner conditions. The 
quantitative composition of the datasets and 
their partition ratios are summarized in Table 
5, which presents a detailed overview of tumor 
classes, imaging modalities, sample counts, and 
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dataset split proportions employed during 
experimentation. 

 

 
Table 5: Dataset characteristics and partition ratios for training, validation, and testing. 

Dataset Tumor Classes Modalities Total Images 
/ Subjects 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

BraTS 
2021 

LGG, HGG T1, T2, 
FLAIR, T1c 

369 subjects 
(≈57,195 
slices) 

70 15 15 

Figshare 
MRI 

Glioma, 
Meningioma, 
Pituitary 

T1-weighted 3,064 images 70 15 15 

 
The cross-validation and stratified sampling 
strategies adopted in this work are critical for 
ensuring balanced learning across tumor 
categories and preventing over-representation 
of any particular class. By integrating multi-
modal volumetric BraTS data with multi-class 2-
D Figshare images, the training corpus achieves 
both anatomical diversity and statistical 
balance. The preprocessing of metadata, bias-
field correction, and  

 
normalization were performed uniformly across 
all datasets to harmonize input distributions 
prior to feature extraction, thereby minimizing 
modality-specific discrepancies. To visualize the 
dataset structure, modality composition, and 
overall data-processing flow, Figure 5 presents 
the schematic overview of the dataset hierarchy 
and its integration into the preprocessing and 
hybrid CNN pipelines. 

 

 
Figure 5: Structural overview of dataset organization and preprocessing integration for hybrid CNN 

training. 
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The combined dataset architecture ensures 
comprehensive coverage of clinical tumor 
variability and imaging conditions. The BraTS 
dataset contributes volumetric, multi-modal 
information ideal for evaluating three-
dimensional consistency, while the Figshare 
dataset enriches the framework with 
heterogeneous two-dimensional samples 
reflecting broader demographic and scanner 
variability. This dual-dataset approach allows 
the hybrid CNN model to learn both intra-
tumoral detail and inter-class differentiation, 
yielding a balanced and generalizable diagnostic 
model. Moreover, the preprocessing and data-
management workflow ensures that all datasets 
remain traceable, ethically compliant, and 
reproducible, aligning with the highest 
standards of biomedical data governance. The 
datasets utilized in this study provide a 
comprehensive experimental foundation that 
unites multi-institutional MRI volumes with 
diverse tumor morphologies. Their structured 
partitioning, rigorous ethical management, and 
standardized preprocessing establish a robust 
baseline for the subsequent stages of hybrid 
feature extraction, fusion, and model 
optimization. The resulting data corpus ensures 
that the proposed framework is not only 
scientifically rigorous but also reproducible, 
interpretable, and scalable for future clinical 
and research applications in neuro-imaging and 
computational oncology. 
 
5.2-   Imaging Preprocessing for Optimal Deep 
Learning Feature Extraction: 
The image preprocessing and enhancement 
pipeline represents the most crucial phase of 
this study’s methodological framework, serving 
as the foundation upon which the robustness, 
interpretability, and accuracy of the proposed 
hybrid deep-learning model are built. Magnetic 
Resonance Imaging (MRI), despite its 
diagnostic superiority, often suffers from several 
inconsistencies that stem from variations in 
scanner types, acquisition parameters, patient 
movement, and magnetic-field distortions. 
These irregularities can introduce intensity 
inhomogeneities, geometric distortions, and 
Rician noise, all of which hinder the ability of 
learning algorithms to extract consistent and 
meaningful features. Therefore, an elaborate 
preprocessing pipeline was developed to 

standardize and refine MRI inputs before they 
are introduced into the hybrid CNN 
architecture. The pipeline ensures that every 
image used for analysis meets the highest 
standards of uniformity, clarity, and reliability, 
allowing both handcrafted and deep features to 
be learned under consistent visual and 
statistical conditions. The preprocessing phase 
begins with data standardization and 
organization, which involves reading the 
volumetric MRI files, verifying image integrity, 
and converting all scans into a consistent 
orientation (axial plane). The BraTS dataset, 
being volumetric, was sliced into 2-D axial views 
to align with the Figshare dataset format, and 
all images were resized to a fixed spatial 
resolution of 240 × 240 pixels. This rescaling 
guarantees that convolutional kernels across all 
network layers receive uniformly dimensioned 
inputs, thereby preventing scaling bias during 
training [31]. To preserve important anatomical 
details, high-order interpolation was employed 
during resizing. For subjects with multiple MRI 
sequences (T1, T2, FLAIR, T1c), each modality 
was aligned to the T1 reference frame using 
rigid registration based on mutual information 
criteria. This alignment ensures voxel-wise 
correspondence across modalities, which is 
critical for accurate multi-modal fusion within 
the CNN. Following spatial alignment, the 
pipeline addresses intensity non-uniformities 
and scanner-dependent variations through N4 
bias-field correction. This step eliminates low-
frequency intensity drifts caused by magnetic-
field inhomogeneities, restoring smooth 
intensity transitions across the brain region. By 
reducing these distortions, the algorithm 
ensures that pixel intensities correspond more 
directly to tissue properties rather than scanner 
artifacts [32]. Once uniformity is achieved, 
intensity normalization is applied across all 
subjects. The normalization process 
standardizes pixel intensity distributions by 
adjusting brightness and contrast levels to a 
fixed mean and standard deviation, allowing 
models to focus on anatomical differences 
rather than imaging discrepancies. The next 
critical stage involves skull stripping and brain 
extraction, which isolate the intracranial region 
by removing the skull, scalp, and surrounding 
non-brain tissues. For volumetric scans, the 
Brain Extraction Tool (BET) was utilized, while 
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the 2-D Figshare dataset was processed through 
a U-Net-based segmentation model trained on 
open-source brain-masking datasets. This 
operation ensures that only brain regions 
containing gray matter, white matter, 
cerebrospinal fluid, and tumor tissues are 
retained for analysis. Effective skull stripping 
eliminates redundant background information, 
accelerates training, and prevents the CNN and 
handcrafted feature extractors from focusing on 
irrelevant high-contrast edges. After anatomical 
isolation, the images undergo noise suppression 
and smoothing, a step essential for removing 
Rician noise while retaining fine structural 
details such as tumor margins and peritumoral 
edema. Anisotropic diffusion filtering was 
adopted because of its ability to perform edge-
preserving smoothing. It selectively reduces 
noise in homogeneous regions without blurring 
tissue boundaries, a property that conventional 
Gaussian filtering cannot achieve. In some 
instances, Non-Local Means (NLM) filtering 
was employed as an auxiliary step to average 
pixel intensities based on patch similarity rather 
than proximity, thereby improving local 
structural coherence. The result is a set of 
images with higher signal-to-noise ratios and 
preserved spatial gradients that enhance both 
handcrafted texture extraction (GLCM/LBP) 
and CNN feature-map stability. To enhance 
tumor visibility, Contrast-Limited Adaptive 
Histogram Equalization (CLAHE) was applied. 
Unlike global histogram equalization, which 
can over-amplify noise and distort brightness, 
CLAHE operates on localized tiles of the image 
and limits contrast amplification through a 
clipping threshold. This technique improves 
local contrast in regions of subtle intensity 
variation, making tumor boundaries and 
internal heterogeneity more pronounced. 
CLAHE proved particularly effective in 

highlighting FLAIR hyperintensities and T1c-
enhanced tumor cores, leading to clearer 
interpretability in Grad-CAM heatmaps and 
improved CNN activation localization. In 
addition to contrast enhancement, the 
preprocessing pipeline incorporates data 
augmentation to artificially expand the diversity 
of training examples. Augmentation strategies 
such as random rotation (±20°), horizontal and 
vertical flipping, scaling (±10 %), and 
translation were employed to simulate real-
world variability in patient orientation and 
scanner alignment [33]. This augmentation 
helps the model develop invariance to 
geometric transformations and prevents 
overfitting, especially when the dataset size is 
limited. Advanced augmentation techniques 
such as elastic deformation and intensity 
perturbation were also utilized to mimic 
realistic clinical variations in tissue shape and 
brightness. To further enhance diversity, a 
Generative Adversarial Network (GAN)–based 
augmentation framework was tested for 
synthesizing additional training samples while 
preserving anatomical plausibility. All 
preprocessing outputs were subjected to quality-
control (QC) evaluation to verify consistency 
and accuracy. Metrics such as signal-to-noise 
ratio (SNR), contrast-to-noise ratio (CNR), and 
entropy were computed to quantify image 
quality. Samples failing QC thresholds were 
reprocessed with adjusted parameters, ensuring 
that all data entering the CNN were of 
diagnostic grade. The various stages of 
preprocessing and their corresponding impacts 
are summarized in Table 6, which lists the 
sequence of operations, functional objectives, 
and observed benefits within the hybrid 
learning pipeline. 
 

 
Table 6: Summary of preprocessing and enhancement stages used in the proposed hybrid CNN 
framework. 

Stage Technique / Tool Primary Objective Impact on Image Quality 
/ Model Performance 

Spatial 
Standardization 

Resizing to 240 × 240 
pixels, mutual-information 
registration 

Geometric 
uniformity across 
subjects 

Enables consistent 
convolutional receptive 
fields 

Bias-Field 
Correction 

N4ITK algorithm Correct intensity 
non-uniformities 

Reduces scanner artifacts; 
improves texture 
consistency 
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Intensity 
Normalization 

Histogram standardization 
and z-score scaling 

Uniform intensity 
scale across datasets 

Enhances comparability 
between subjects 

Skull Stripping BET (BraTS) / U-Net 
(Figshare) 

Remove non-brain 
tissues 

Focuses analysis on 
intracranial structures; 
reduces computation 

Noise Reduction Anisotropic diffusion / 
NLM filtering 

Suppress Rician noise 
while preserving 
edges 

Improves tumor-boundary 
sharpness; stabilizes 
features 

Contrast 
Enhancement 

CLAHE Highlight subtle 
tissue variations 

Improves lesion visibility 
and CNN attention maps 

Data 
Augmentation 

Rotation, flipping, scaling, 
GAN synthesis 

Increase training 
diversity and reduce 
overfitting 

Enhances generalization 
and robustness 

 
To depict the sequential interconnection 
between these operations, Figure 6 presents a  
 

 
conceptual workflow of the MRI preprocessing 
and enhancement pipeline. 
       

 

 
Figure 6: Conceptual workflow of the MRI preprocessing and enhancement pipeline. 

 
The comprehensive preprocessing and 
enhancement framework ensures that MRI 
inputs entering the hybrid CNN are consistent, 
noise-free, and diagnostically rich. By enforcing 
geometric alignment, correcting scanner bias, 
enhancing local contrast, and expanding data 
diversity through augmentation, this stage 
maximizes the reliability and interpretability of 
downstream feature learning. Furthermore, it 
guarantees  
 

that handcrafted texture descriptors 
(GLCM/LBP) and deep CNN feature maps 
operate on standardized inputs, reducing inter-
subject variability and improving model 
generalization. Ultimately, this meticulous 
preprocessing pipeline not only elevates the 
quantitative performance of the hybrid 
architecture but also strengthens its clinical 
credibility, establishing a reproducible pathway 
for real-world neuro-imaging applications. 
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5.3-    Automated Feature Extraction and 
Optimization Process: 
The feature extraction mechanism lies at the 
heart of the proposed hybrid deep-learning 
framework, representing the stage where 
enhanced MRI data are converted into 
compact, discriminative representations 
capable of capturing the full visual and 
contextual complexity of brain-tumor 
structures. Rather than relying solely on deep 
networks or purely handcrafted descriptors, the 
framework introduces a dual-stream 
architecture that unites the precision and 
interpretability of statistical texture analysis 
with the adaptability and abstraction power of 
convolutional feature learning. This synergy 
ensures that information from both 
microscopic texture irregularities and 
macroscopic morphological patterns is 
comprehensively modeled, providing a more 
robust and clinically meaningful basis for 
classification. After preprocessing, each MRI 
slice enters two parallel analytical channels. In 
the first, a handcrafted feature extraction 
branch computes quantitative texture 
descriptors through the Gray-Level Co-
occurrence Matrix (GLCM) and Local Binary 
Patterns (LBP). GLCM measures the frequency 
of co-occurring gray-level pairs separated by 
fixed spatial relationships, producing 
parameters such as contrast, correlation, 
homogeneity, energy, and entropy. These 
metrics reveal subtle spatial dependencies that 
distinguish normal tissue from tumorous 
regions. LBP, in contrast, encodes micro-
textures by thresholding each pixel relative to its 
neighbors, forming rotation-invariant binary 
codes that summarize local structural 
irregularities [34]. The combination of GLCM 
and LBP ensures that both global statistical 
uniformity and fine local variations are 

faithfully represented. All handcrafted features 
are normalized to eliminate scale dependency 
and concatenated into a fixed-length statistical 
vector that expresses the intrinsic textural 
fingerprint of each MRI slice. In parallel, the 
deep-learning branch employs a custom 
Convolutional Neural Network (CNN) to 
extract hierarchical semantic features. The 
network consists of successive convolutional 
blocks, each comprising convolutional, batch-
normalization, ReLU activation, and pooling 
layers. Early layers focus on detecting primitive 
edges and gradient transitions, while deeper 
layers respond to increasingly complex motifs 
such as irregular tumor boundaries, necrotic 
cores, and peritumoral edema patterns. By 
processing multi-modal MRI inputs T1, T2, 
FLAIR, and contrast-enhanced T1c the CNN 
learns to associate modality-specific cues with 
characteristic disease signatures. Global average 
pooling and dropout are introduced at the final 
stages to minimize overfitting and reduce 
feature redundancy, yielding compact 
embeddings that capture high-order spatial 
context and shape semantics. Both feature 
streams are processed independently but 
converge at a later fusion layer. The handcrafted 
path contributes interpretable, domain-
anchored cues about textural heterogeneity, 
whereas the CNN path supplies deep 
contextual understanding derived from end-to-
end learning. Their complementarity produces 
a feature space that is simultaneously human-
readable and machine-efficient bridging the 
explainability of radiomic descriptors with the 
predictive power of modern neural 
representations. To clarify the characteristics 
and roles of these two feature categories, Table 
7 summarizes the key properties of handcrafted 
and deep features within the proposed hybrid 
system. 
 

 
Table 7: Comparison of handcrafted and deep features in the hybrid CNN framework. 

Feature 
Type 

Source / 
Method 

Approximate 
Dimensionality 

Nature of 
Information 

Captured 

Principal 
Strengths 

Potential 
Limitations 

Handcrafted 
Features 

GLCM, LBP 
(texture 
descriptors) 

100–250 
features per 
image 

Local statistical 
and structural 
texture 
variations 

High 
interpretability; 
robust to small 
data sizes; 
explicit 

Limited 
abstraction; 
sensitive to 
parameter 
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quantitative 
meaning 

tuning and 
noise 

Deep 
Features 

CNN with 
multi-modal 
input (5 
convolutional 
blocks) 

1,000–2,000 
learned features 
per image 

Hierarchical 
spatial and 
semantic 
representations 
across 
modalities 

Strong non-
linear 
modeling 
capacity; 
captures 
contextual 
relationships 

Reduced 
interpretability; 
requires larger 
training data 
and 
computational 
resources 

 
The table illustrates how handcrafted features 
serve as explainable, texture-based indicators of 
tumor heterogeneity, while deep features supply 
complex hierarchical representations that 
model shape, intensity, and global spatial 
relationships. Together, they form the dual  

 
foundation upon which the fusion and 
classification stages operate. The entire dual-
stream extraction workflow is depicted in 
Figure 7, which visualizes the coordinated 
operation of both branches from input MRI to 
feature fusion. 

 

 
Figure 7: Dual-stream feature extraction and integration process in the proposed hybrid CNN 

architecture. 
 
Through this parallelized extraction 
mechanism, the framework achieves a 
multidimensional balance between precision 
and abstraction. The handcrafted descriptors 
enrich the interpretability of the learning 
process by grounding model predictions in 
quantifiable texture parameters recognizable to  
radiologists. The CNN complements this by 
discovering latent patterns and complex spatial 
hierarchies beyond human perception. The 
resulting hybrid representation is therefore not 
merely a concatenation of features but a  

 
 
harmonized synthesis that captures the intricate 
interplay between tumor micro-textures, 
macroscopic morphology, and contextual 
surroundings. This integrative approach 
ensures that every subsequent step from fusion 
to classification operates on a feature 
foundation that is comprehensive, 
discriminative, and deeply aligned with the 
underlying biological and anatomical realities 
of brain-tumor imaging. 
 



 Volume 3, Issue 6, 2025 
 

  

 https://nmsreview.org                    | Afzal et al., 2025 | Page 145 

 
5.4-    Model Training and Adaptive Parameter 
Control Framework: 
The model training and optimization phase 
represents the most computationally intensive 
and analytically critical stage of the hybrid deep-
learning framework. It is in this stage that the 
preprocessed, feature-enriched, and fused data 
are iteratively learned by the hybrid CNN 
model to minimize classification error and 
maximize diagnostic accuracy. The objective of 
this training process is not only to achieve high 
numerical performance but also to ensure 
stability, reproducibility, and clinical reliability 
in tumor detection and classification. Every 
component from data division and learning-
rate scheduling to regularization and optimizer 
selection was designed with the goal of 
balancing convergence speed, generalization 
ability, and interpretability. Training began 
with the integration of the BraTS 2021 and 
Figshare datasets, each split into training, 
validation, and testing subsets according to a 
70:15:15 ratio to maintain statistical 
consistency and ensure that all tumor classes 
were equally represented across the folds. A five-
fold cross-validation approach was employed to 
guarantee robustness, minimize sampling bias, 
and allow generalization across unseen data. 
Each fold was trained independently with 
shuffled samples, and model weights were 
reinitialized at the start of every iteration to 
prevent any prior bias accumulation. The 
hybrid CNN architecture was implemented in 
TensorFlow 2.12 and trained on a high-
performance GPU environment (NVIDIA RTX 
A6000 with 48 GB VRAM). Each training 
epoch processed mini-batches of 32 MRI slices 
to balance GPU memory efficiency with 
gradient stability. The model was optimized 
using the Adam optimizer, chosen for its 
adaptive learning-rate adjustment and 
momentum-based gradient correction. The 
initial learning rate was set to 0.001 and 
decayed exponentially with a factor of 0.9 every 
ten epochs to prevent overfitting and oscillatory 

convergence. The categorical cross-entropy loss 
function was employed as the primary objective 
metric, as it effectively captures the probabilistic 
divergence between predicted and true tumor 
classes. To enhance model stability and avoid 
overfitting an issue common in medical image 
datasets due to limited sample sizes several 
regularization strategies were implemented. 
Dropout layers were inserted after each dense 
layer with a rate of 0.4, randomly deactivating 
neurons during training to promote 
redundancy in feature learning. Batch 
normalization was applied throughout 
convolutional layers to standardize 
intermediate activations, ensuring smoother 
gradient propagation. Early stopping was 
introduced based on validation-loss monitoring 
with a patience threshold of 15 epochs; this 
mechanism halted training when no 
improvement was observed, conserving 
computational resources while preserving 
optimal model parameters [35]. The total 
number of training epochs varied between 100 
and 150, depending on convergence behavior. 
Performance evaluation was conducted after 
every epoch using both training and validation 
datasets. Metrics such as accuracy, precision, 
recall (sensitivity), specificity, and F1-score were 
computed to assess classification performance 
from multiple perspectives. The model also 
produced Receiver Operating Characteristic 
(ROC) curves for each class, and the Area 
Under the Curve (AUC) was calculated to 
quantify the discriminative capacity of the 
classifier. Across all folds, the hybrid CNN 
consistently achieved a mean accuracy of 
99.1%, sensitivity of 98.7%, and specificity of 
98.9%, outperforming traditional CNN models 
trained without handcrafted feature fusion. A 
concise summary of the hyperparameters and 
optimization settings is presented in Table 8, 
detailing the architecture and training 
configuration used to achieve optimal 
convergence. 
 

 
Table 8: Model training configuration and hyperparameter settings. 

Parameter Description / Value 
Framework TensorFlow 2.12 (Python 3.9) 
Hardware NVIDIA RTX A6000 GPU (48 GB VRAM) 
Batch Size 32 MRI slices 
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Learning Rate 0.001 (exponential decay, factor = 0.9 / 10 epochs) 
Optimizer Adam (β₁ = 0.9, β₂ = 0.999, ε = 1e−8) 
Loss Function Categorical Cross-Entropy 
Epochs 100–150 (with early stopping, patience = 15) 
Regularization Dropout (0.4), Batch Normalization 
Validation Split 15% of data per fold 
Cross-Validation Five-fold with randomized initialization 
Evaluation Metrics Accuracy, Sensitivity, Specificity, Precision, F1-score, AUC 

 
To visually illustrate the optimization process, 
Figure 8 presents the learning convergence 

curves depicting the relationship between 
training and validation accuracy and loss over 
the epochs. 

 

 
Figure 8: Training and validation performance curves for the hybrid CNN model.

 
 
The convergence pattern observed in Figure 12 
confirms that the hybrid CNN framework 
achieved stable and rapid optimization with 
minimal variance between training and 
validation metrics. The parallel alignment of 
accuracy and loss curves demonstrates that the 
model maintained excellent generalization 
capacity without succumbing to overfitting, a 
direct result of the integration of regularization 
techniques and the adaptive learning strategy. 
Furthermore, the convergence speed was found 
to be superior compared to standard CNN 
architectures, primarily due to the 
complementary contribution of handcrafted 
texture descriptors, which provided an 
additional regularizing effect and stabilized the  
learning trajectory. The interpretability of the 
trained model was further enhanced through  

 
 
Gradient-weighted Class Activation Mapping 
(Grad-CAM) visualizations, which highlighted 
the regions most influential in classification 
decisions. The heatmaps revealed strong 
activation around tumor boundaries and core 
regions, validating that the model’s focus 
aligned with clinically relevant structures. Such 
interpretability tools confirm that the model 
not only performs accurate classification but 
also reasons in a manner consistent with 
radiological intuition. The model training and 
optimization process successfully established a 
balance between computational precision and 
clinical transparency. By employing adaptive 
learning-rate control, strong regularization, and 
hybrid feature integration, the model achieved 
near-perfect classification performance across 
multiple datasets while maintaining 
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interpretability and reproducibility. This 
optimized training strategy thus ensures that the 
hybrid CNN framework is both technically 
sound and clinically viable, providing a robust 
foundation for future deployment in real-world 
neuro-imaging diagnostics. 
 
Results and Discussion: 
The results of this study present a 
comprehensive evaluation of the proposed 
hybrid CNN-based architecture integrating 
handcrafted and deep features for brain tumor 
detection and classification. This section details 
the empirical findings from model training, 
validation, and testing using the BraTS 2021 
and Figshare MRI datasets, covering both 
quantitative performance outcomes and 
qualitative interpretability analyses. The 
findings demonstrate that the combination of 
handcrafted textural descriptors (GLCM and 
LBP) with convolutional deep-learning features 
not only enhanced accuracy and generalization 
but also improved interpretability and clinical 
reliability. The hybrid model achieved a 
remarkable level of diagnostic accuracy across 
all tumor categories, surpassing conventional 
CNN architectures and classical machine 
learning models. The final model achieved an 
average classification accuracy of 99.1%, 

sensitivity of 98.7%, and specificity of 98.9%, 
establishing its capability to detect tumors 
across multiple MRI modalities with high 
precision. The mean F1-score of 98.8% 
confirms that the model maintained an ideal 
balance between precision and recall. 
Moreover, the Area Under the ROC Curve 
(AUC) reached 0.994, highlighting the system’s 
ability to robustly differentiate between healthy 
and tumorous tissues. The class-wise 
performance analysis revealed consistent 
stability and accuracy across all tumor types, 
including glioma, meningioma, pituitary 
adenoma, low-grade glioma (LGG), and high-
grade glioma (HGG). The hybrid system’s 
adaptive fusion strategy allowed it to capture 
both local textural patterns and global semantic 
structures, effectively distinguishing subtle 
variations between visually similar subtypes 
such as LGG and HGG a persistent challenge 
in traditional neuro-imaging classification 
systems [36]. A detailed quantitative summary 
of the hybrid model’s performance across 
tumor categories is provided in Table 9, 
illustrating the uniformity and reliability of 
results obtained through five-fold cross-
validation. 
 

 
Table 9: Quantitative performance of the proposed hybrid CNN framework across tumor classes. 

Tumor Category Accuracy 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1-Score 
(%) 

AUC 

Glioma 99.2 98.9 98.7 99.1 98.8 0.995 
Meningioma 98.9 98.5 98.2 98.6 98.3 0.992 
Pituitary 
Adenoma 

99.0 99.1 98.8 99.3 98.9 0.994 

LGG 99.3 99.0 98.9 99.4 99.0 0.996 
HGG 99.1 98.8 98.6 99.0 98.7 0.995 
Average 99.1 98.9 98.7 99.1 98.8 0.994 

 
The quantitative findings confirm that the 
hybrid CNN framework is not only statistically 
robust but also exhibits exceptional intra-class 
and inter-class consistency. The small standard 
deviation (<0.5%) across folds indicates strong 
generalization capability and minimal 
overfitting. A comparative performance analysis 
was also carried out to benchmark the proposed 
system against several baseline models, 

including Support Vector Machines (SVM), 
Random Forests (RF), conventional  
 
CNNs, and transfer-learning-based CNNs such 
as VGG-16. The results, presented in Table 10, 
demonstrate that the proposed hybrid 
architecture consistently outperforms all 
comparative approaches across all key 
performance indicators. 
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Table 10: Comparative performance of the proposed hybrid CNN model with baseline methods. 

Model Feature Type Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1-
Score 
(%) 

SVM Handcrafted (GLCM + 
LBP) 

91.6 89.4 90.1 89.7 

Random Forest Handcrafted (GLCM + 
LBP) 

92.8 90.7 91.5 91.0 

CNN (Baseline) Deep-only 95.4 94.1 93.8 94.0 
VGG-16 
(Transfer 
Learning) 

Deep-only 96.8 95.3 94.9 95.5 

Proposed 
Hybrid CNN 

Handcrafted + Deep 
Features (Adaptive Fusion) 

99.1 98.7 98.9 98.8 

 
This comparison illustrates the hybrid model’s 
superiority in every performance category. The 
adaptive fusion mechanism achieved a 
significant improvement of approximately 2.3% 
over transfer-learning CNNs and 7–8% over 
classical handcrafted-based classifiers. This 
improvement demonstrates that handcrafted 
features, when properly fused with deep 
features, introduce interpretive granularity that 
enriches deep-learning decision boundaries 
without compromising  

 
efficiency. The distribution of true and false 
predictions is visualized in Figure 9, which 
presents the confusion matrix of the proposed 
hybrid CNN. The matrix reveals near-perfect 
classification alignment, with almost all 
predictions lying along the diagonal axis. The 
only minor overlaps occurred between LGG 
and HGG, primarily due to their shared visual 
and morphological characteristics in MRI 
scans. 
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Figure 9: Confusion matrix of tumor classification using the proposed hybrid CNN model. 

 
Beyond numerical metrics, interpretability was 
a major component of the evaluation. To 
visualize how the model identifies tumor 
regions, Gradient-weighted Class Activation 
Mapping (Grad-CAM) was employed to 
generate activation heatmaps. These heatmaps 
revealed that the CNN consistently focused on 
tumor regions, peritumoral edema, and 

relevant structural boundaries, closely aligning 
with radiological ground truth. This behavior 
demonstrates that the model’s predictions are 
driven by medically meaningful evidence rather 
than irrelevant artifacts. The visual 
interpretability outcomes are summarized in 
Figure 10, showing representative samples from 
each tumor type. 
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Figure 10: Grad-CAM visualizations demonstrating tumor localization and interpretability.

 
The Grad-CAM visualizations confirmed that 
the hybrid CNN not only provides accurate 
predictions but also offers interpretive 
transparency by visually pinpointing the 
pathological regions influencing its 
classification decisions. This enhances the 
trustworthiness of the model in a clinical 
environment, where interpretability remains a 
key prerequisite for AI adoption. To assess 
statistical robustness, a variance analysis across 
all evaluation folds was performed. The 
standard deviation in accuracy, sensitivity, and 
F1-score remained below ±0.5%, confirming 
stable generalization even when exposed to 
different data subsets. Additionally, the model 

exhibited consistent convergence behavior with 
minimal oscillation in training and validation 
losses, affirming its resilience against overfitting 
[37]. The training time per fold averaged 
approximately 145 minutes on an NVIDIA 
RTX A6000 GPU, which is computationally 
efficient given the hybrid  
 
 
architecture’s dual-stream nature. A graphical 
comparison of model performance across 
different evaluation metrics is shown in Figure 
11, illustrating the superior and stable 
performance trends of the hybrid CNN model. 
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Figure 11: Comparative evaluation of accuracy, sensitivity, specificity, and F1-score across models.

 
 
The experimental results confirm that the 
proposed hybrid CNN model offers a 
substantial advancement in brain-tumor 
classification accuracy, stability, and 
interpretability. By integrating handcrafted 
statistical descriptors and deep-learning feature 
representations through an adaptive fusion 
mechanism, the system overcomes the 
limitations of both traditional machine-
learning and deep-learning approaches. The 
resulting performance metrics nearly 99% 
accuracy, strong sensitivity and specificity, and 
interpretable visual outputs demonstrate that 
the hybrid CNN framework is both technically 
robust and clinically relevant. It stands as a 
reliable candidate for real-world neuro-imaging 
applications, offering the precision of AI-based 
automation while preserving the transparency 
and traceability necessary for clinical trust and 
decision support. 
 
Future Work: 
While the proposed hybrid CNN-based 
framework has demonstrated exceptional 
performance, robustness, and interpretability 
for brain tumor detection and classification, 
several promising directions remain open for 
future research and system enhancement. The 
next phase of this research will aim to broaden 
the clinical applicability, improve 
computational scalability, and incorporate 
advanced AI paradigms that further enhance  

 
 
precision, transparency, and integration with 
real-world healthcare systems. One of the most 
critical future extensions involves the 
integration of multi-modal and multi-
parametric data sources. The current study 
utilized MRI sequences such as T1, T2, FLAIR, 
and T1c; however, combining these with 
complementary imaging modalities like 
Diffusion Tensor Imaging (DTI), Positron 
Emission Tomography (PET), and MR 
Spectroscopy could yield deeper physiological 
and metabolic insights [38]. Such fusion of 
structural, functional, and metabolic data could 
substantially improve differentiation between 
tumor grades and enable more accurate 
assessment of infiltration, recurrence, and 
treatment response. Future architectures may 
incorporate modality-specific encoders that 
dynamically learn cross-modality correlations, 
leading to richer and more biologically 
grounded feature representations. Another 
promising avenue involves the deployment of 
3D convolutional architectures. While the 
current framework operates on 2D MRI slices 
for computational efficiency, extending the 
model into a volumetric (3D CNN) paradigm 
will allow it to capture inter-slice spatial 
continuity and contextual depth information. 
This enhancement would enable more 
anatomically faithful segmentation and 
classification of complex, irregular tumor 
shapes. Hybrid 3D–2D architectures or 
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attention-guided volumetric CNNs could also 
mitigate the limitations of slice-based analysis 
while preserving efficiency. The incorporation 
of explainable and transparent AI mechanisms 
will continue to be a core focus. Although Grad-
CAM has proven effective for qualitative 
interpretability, future research can employ 
more advanced explainability techniques such 
as Layer-wise Relevance Propagation (LRP), 
SHAP, or occlusion sensitivity analysis to 
provide quantitative interpretability metrics. 
These tools will not only assist in clinical 
validation but also contribute toward regulatory 
compliance, ethical transparency, and model 
auditing in medical AI systems. From a 
computational standpoint, future work will 
explore federated and privacy-preserving 
learning frameworks. Since patient MRI data 
are sensitive and often distributed across 
institutions, deploying federated learning will 
allow model training on decentralized datasets 
without exposing raw patient information [39]. 
This paradigm aligns with modern ethical 
standards and legal frameworks such as HIPAA 
and GDPR. Integrating the hybrid CNN model 
into a federated architecture could significantly 
improve generalization across hospitals, 
scanners, and populations while maintaining 
data confidentiality. In addition, real-time 
inference optimization and lightweight 
deployment strategies will be explored to enable 
clinical translation. Converting the hybrid 
model into an optimized format using 
quantization, pruning, or knowledge 
distillation can allow deployment on edge 
devices or hospital imaging workstations with 
limited computational resources. Such 
optimization would enable immediate feedback 
during MRI acquisition or radiological 
examination, assisting clinicians in rapid 
decision-making. Another important research 
trajectory will focus on tumor segmentation and 
progression prediction [40]. Extending the 
current classification system to perform pixel-
wise segmentation and temporal progression 
modeling will enhance its clinical utility for 
treatment planning and longitudinal 
monitoring. Combining the hybrid feature 
extraction approach with temporal modeling 
networks such as ConvLSTM or Transformer-
based architectures could enable early 
prediction of recurrence or response to therapy. 

Furthermore, future work should incorporate 
large-scale, multi-center clinical validation to 
evaluate the model’s real-world robustness. 
Collaborations with hospitals and research 
institutes will facilitate the acquisition of 
diverse datasets, allowing assessment across 
patient demographics, MRI scanners, and 
imaging protocols [41]. Statistical validation 
through confidence intervals, inter-rater 
reliability analysis, and external test sets will 
further establish clinical reliability and 
generalizability. Lastly, integrating the hybrid 
CNN into a comprehensive clinical decision-
support system (CDSS) will form the bridge 
between algorithmic innovation and practical 
application. Such systems could combine tumor 
classification, segmentation, prognosis 
prediction, and treatment recommendation 
modules into a unified AI-assisted diagnostic 
platform. Coupled with explainable 
visualization dashboards, this would allow 
radiologists and oncologists to interact 
intuitively with model predictions, validate 
findings, and make informed treatment 
decisions in real time. 
 
Conclusion: 
This study presented a comprehensive and high-
performing hybrid deep-learning framework for 
automated brain tumor detection and 
classification using magnetic resonance imaging 
(MRI). By integrating handcrafted texture 
descriptors namely the Gray-Level Co-
occurrence Matrix (GLCM) and Local Binary 
Patterns (LBP) with deep convolutional neural 
representations, the proposed model 
successfully bridged the gap between traditional 
radiomics and modern data-driven learning. 
The hybrid architecture achieved state-of-the-art 
accuracy (99.1%), sensitivity (98.7%), and 
specificity (98.9%), while maintaining 
interpretability through transparent 
visualization techniques such as Gradient-
weighted Class Activation Mapping (Grad-
CAM). These results substantiate the potential 
of hybrid architectures as an effective, 
explainable, and clinically trustworthy 
approach for neuro-imaging diagnostics. The 
framework demonstrated that handcrafted 
features still hold significant value when 
synergistically combined with deep-learning 
representations. The inclusion of GLCM and 
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LBP descriptors enriched the CNN feature 
space with fine-grained texture and spatial 
correlation details, while the adaptive fusion 
strategy ensured balanced contribution from 
both feature domains. This hybrid design not 
only enhanced classification accuracy but also 
improved model stability, reduced overfitting 
tendencies, and increased robustness against 
imaging noise and intensity variations. The 
successful differentiation between low-grade 
and high-grade gliomas, often considered one of 
the most challenging classification tasks in 
neuro-oncology, highlighted the system’s 
diagnostic sensitivity and contextual 
understanding of tumor heterogeneity. A key 
achievement of this study lies in its 
commitment to interpretability and clinical 
transparency. The Grad-CAM heatmaps 
confirmed that the network’s activations 
consistently aligned with radiologically relevant 
regions tumor cores, peritumoral edema, and 
lesion boundaries demonstrating that the 
model’s decisions are grounded in meaningful 
anatomical patterns rather than spurious 
correlations. This level of transparency is 
indispensable for building clinical trust and 
facilitating adoption in radiological workflows. 
The hybrid CNN framework also exhibited 
notable computational efficiency. Despite its 
dual-stream architecture, it achieved rapid 
convergence with minimal variance across 
validation folds, completing each training 
session within approximately 145 minutes on a 
single NVIDIA RTX A6000 GPU. The low 
standard deviation (<0.5%) across all 
performance metrics underscores its 
generalization capability and reproducibility 
two essential criteria for clinical deployment 
and large-scale institutional integration. Beyond 
its technical achievements, this work 
contributes conceptually to the evolving 
landscape of explainable artificial intelligence 
(XAI) in medical imaging. It demonstrates that 
high accuracy and interpretability are not 
mutually exclusive but can coexist through 
thoughtful architectural fusion. The proposed 
model’s explainable outputs make it not only a 
diagnostic aid but also a collaborative decision-
support tool capable of complementing human 
expertise. 
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