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ABSTRACT

Liver diseases represent a major global health burden, contributing to millions of deaths annually
due to delayed diagnosis and inadequate clinical screening mechanisms. Early and reliable
identification of liver disorders is therefore critical to improve patient outcomes and reduce
healthcare costs. This study proposes an optimized machine learning (ML)-based diagnostic
framework to enhance predictive performance using systematic preprocessing, dataset balancing,
and hyperparameter tuning. The Indian Liver Patient Dataset (ILPD) from the UCI Machine
Learning Repository was employed to evaluate several ML models, including Random Forest (RE),
Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Gradient Boosting (GB).
Rigorous data preprocessing involved duplicate removal, missing value imputation using
Multivariate Imputation by Chained Equations (MICE), Z-score standardization, and outlier
elimination. Synthetic Minority Oversampling Technique (SMOTE) was applied to address class
imbalance, while GridSearchCV and RandomizedSearchCV were used for hyperparameter
optimization. The optimized Random Forest model achieved the highest accuracy of 84.52%,
outperforming other classifiers in precision (90.33%), recall (81.81%), and Fl-score (85.86%),
with a statistically significant pvalue of 1.21x1071¢, The findings underscore the effectiveness of
model optimization and balanced data handling in improving diagnostic accuracy for liver disease.
The proposed approach provides a robust foundation for intelligent decision-support systems in
clinical environments and paves the way for further integration of data-driven methodologies in
hepatology.

Keywords: Liver Disease, Classification, Machine Learning, Support Vector Machine, k-Nearest
Neighbour, Random Forest.

INTRODUCTION

Liver disease encompasses a broad spectrum of contribute substantially to global morbidity and
disorders—ranging from non-alcoholic fatty liver mortality [1]. Traditional diagnostic practices
disease (NAFLD) and viral hepatitis to cirrhosis rely on a combination of blood-biochemical
and hepatocellular carcinoma—that together markers, ultrasound or CT/MRI imaging, and,

https://nmsreview.org | Khan et al., 2025 | Page 157


mailto:uzair@uotnowshera.edu.pk
https://doi.org/10.5281/zenodo.17431180

mJ > RINMSR

Review Journal of Neurological
& Medical Sciences Review

in some cases, invasive liver biopsy. However,
many patients are diagnosed at advanced stages,
when therapeutic options become more limited
Or outcomes worse.

In recent years, the rapid proliferation of digital
medical records, laboratory test results and
medical-imaging data has created fertile ground
for artificial intelligence (AI) and machine-
learning (ML) methods to support early
detection [2] and more accurate classification of
liver disease [3], Alzheimer disease [4] and heart
disease [5]. Numerous studies have applied
supervised learning techniques such as support
vector machines (SVMs), decision trees, random
forests (RFs) and deep neural networks, to
structured  clinical ~datasets or imaging
modalities, demonstrating promising albeit
varied performance. For example, Tanwar &
Rahman review the progress of machine learning
in the diagnosis of liver disease and outline the
major opportunities and limitations in the field
(6]. Similarly, surveys of liver-disease prediction
studies find a dominance of algorithms such as
RF, CNN and SVM across structured and
imaging data [7].

Despite this progress, several key challenges
remain in  achieving clinically reliable,
generalizable ML models for liver disease
diagnosis. First, many studies suffer from limited
dataset sizes, imbalance in disease vs healthy
classes, and narrow representation of patient
populations, impairing real-world applicability
and external validity. Second, many pipelines
stop at model accuracy, but pay insufficient
attention to issues of interpretability,
transparency, and integration with clinical
workflows, factors that are critical for adoption
in medical settings. Third, variability in input
data types (e.g., imaging vs biochemical vs
demographic) and heterogeneous preprocessing
practices  hamper  reproducibility = and
comparability across studies. In particular, as
noted by Gupta et. al., in their survey of liver
disease prediction using machine learning,
standardization of feature engineering, handling
of missing data, class imbalance and validation
protocols remain areas for improvement [8].
Given these challenges, there is a strong
imperative to develop enhanced machine-
learning frameworks that
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> Maximize diagnostic performance in
terms of performance evaluation metrics (PEMs)
i.e., accuracy, precision, recall and F1-Score.

> Robustly handle the complexities of
real-world  clinical ~datasets  (missingness,
heterogeneity, imbalance).

> Provide interpretable outputs suited for
clinician review and action.

The contributions of the present work are
framed in this context. Specifically, we propose a
methodology to enhance the performance of
machine learning models for liver disease
diagnosis, by integrating advanced preprocessing
alongside  hyperparameter  tuning  using
GridSearchCV and RandomSearchCV.

In the remaining sections of this article, Section
II reviews relevant background literature,
Section III describes the dataset, preprocessing
and model architecture, Section IV reports
experimental results and discussion, Section V
discusses implications and limitations, and
Section VI concludes with future directions.

RELATED WORK

The integration of machine learning (ML) into
healthcare  diagnostics has  considerably
advanced the early detection of liver disorders by
identifying hidden data patterns that may not be
apparent through conventional laboratory
analysis. Recent investigations have emphasized
improving diagnostic reliability by combining
data preprocessing, feature selection, and
classification optimization. Singh et al. [9]
highlighted that applying feature selection
techniques to the Indian Liver Patient Dataset
(ILPD) substantially improves classification
accuracy when using standard algorithms such as
logistic regression (LR), random forest (RF), and
support vector machines (SVM). Their
comparative study demonstrated that the
inclusion of optimal attribute subsets enhanced
LR accuracy to 74.36%, underscoring the
influence of data-driven feature selection in liver
disease classification.

Expanding on this foundation, Ghosh et al. [10]
evaluated a broad range of algorithms including
LR, SVM, XGBoost, AdaBoost, K-Nearest
Neighbors (KNN), and decision trees, on
chronic liver disease prediction. Their work
reported that RF achieved the highest accuracy
(83.77%) and Fl-score (90.16%), confirming the

robustness of ensemble learning in managing
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nonhnear relationships among biochemical
indicators. Similarly, Dritsas and Trigka [11]
demonstrated that ensemble-based voting
classifiers, when coupled with data balancing
methods such as SMOTE and cross-validation,
outperformed individual classifiers, yielding an
AUC of 88.4%. These findings collectively
reinforce that combining classifiers and
employing data-resampling approaches can
mitigate imbalance issues prevalent in medical
datasets.

While these efforts have largely focused on
structured datasets, Sorino et al. [12] extended
the domain by incorporating anthropometric
and biochemical indicators for the prediction of
Non-Alcoholic Fatty Liver Disease (NAFLD).
Their comparison of eight ML algorithms under
multiple predictor models revealed SVM as the
most stable classifier, achieving 68-77%
accuracy with  minimal variance, thus
demonstrating its adaptability for real-world
clinical screening. Dalal et al. [13] further
advanced this paradigm by integrating
hyperparameter-tuned  eXtreme  Gradient
Boosting (XGBoost) with conventional decision
trees and chisquare automated interaction
detection. Their hybrid model attained
improved accuracy (73.24%), emphasizing the
value of boosting strategies in refining diagnostic
precision and aiding early disease intervention.
Gupta et al. [14] reaffirmed the significance of
feature engineering by comparing seven
classifiers,  including gradient  boosting,
LightGBM, and RF, on the ILPD dataset. They
observed that RF remained a reliable performer
(accuracy = 63%), though its precision and recall
values indicated a need for further optimization,
especially in handling high-dimensional and
correlated features. In contrast, Azam et al. [15]
experimented with a hybrid approach using
KNN, SVM, decision tree, and perceptron
models. Their evaluation revealed KNN as the
most effective, achieving 74% accuracy after
feature tuning, thereby validating the merit of
local-instance-based learning for biomedical
data.

Complementing these works, Geetha and
Arunachalam [16] focused on early-stage disease
classification between healthy and affected
individuals using logistic regression and SVM.
Their analysis demonstrated that SVM achieved
superior accuracy (75.04%) and precision
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(77.09%), highlighting the importance of
margin-based optimization for smallsample
medical datasets. Rele and Patil [17] presented a
more comprehensive comparison among LR,
RF, KNN, SVM, and XGBoost, observing that
SVM again dominated with an accuracy of 77%
and Fl-score of 82%. Notably, despite the lower
AUC value, their results emphasized SVM'’s
consistency in capturing complex nonlinear
decision boundaries when applied to clinical
datasets with heterogeneous attributes. In a
broader comparative framework, Naseem et al.
[18] examined ten diverse classifiers—including
RF, SVM, multilayer perceptron (MLP), naive
Bayes, and Forest-PA—across both UCI and
GitHub liver datasets. Their results confirmed
RF as the best performer on the UCI dataset
(accuracy = 72.17%) and SVM as the top model
on GitHub data (accuracy = 71.36%). The
inclusion of multiple datasets strengthened the
generalizability of their conclusions and
provided a reference benchmark for future
diagnostic research.

Collectively, these studies provide several key
insights. First, the predictive performance of ML
models for liver disease heavily depends on the
quality of preprocessing, especially in feature
selection and data balancing. Second, ensemble
techniques (e.g., RF, XGBoost, and voting
classifiers) consistently outperform single-model
classifiers due to their ability to aggregate
decision boundaries and reduce variance. Third,
despite achieving moderate accuracy levels
(typically between 70-85%), most studies reveal
limitations in generalization across datasets and
lack explainability mechanisms critical for
clinical adoption. Therefore, the current
research aims to enhance the performance and
interpretability of ML models through a unified
framework  that integrates optimized
preprocessing,  ensemble  learning, and
explainable decision support to advance the
reliability of liver disease diagnosis.

METHODOLOGY

The methodological framework adopted in this
study was designed to enhance the predictive
performance and reliability of machine learning
models for liver disease diagnosis. The complete
workflow consisted of dataset collection,
preprocessing, data balancing, model training,
and hyperparameter optimization. Each phase
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was carefuﬂy executed to ensure that the
resulting models generalized well across diverse
clinical samples and minimized bias induced by
data inconsistencies.

Dataset Collection

The dataset used in this study is the Indian Liver
Patient Dataset (ILPD), which was obtained
from the UCI Machine Learning Repository, a
well-known open-access platform for
benchmarking predictive algorithms. The
dataset comprises 583 instances and 10 features
relevant to liver health indicators, including
biochemical markers such as Total Bilirubin,
Direct  Bilirubin,  Alkaline  Phosphatase
(AlkPhos), Serum Glutamic-Pyruvic
Transaminase (SGPT), Serum Glutamic-
Oxaloacetic Transaminase (SGOT), Total
Proteins, Albumin, and Albumin/Globulin
(A/G) ratio. Additionally, the dataset includes
demographic attributes such as Age and Gender,
with the target variable denoting whether the
individual is a liver patient (1) or not (2).

The dataset’s inherent imbalance, where patient
records substantially outnumber healthy cases
necessitated data-level intervention to prevent
bias during model learning. Thus, appropriate
preprocessing and balancing techniques were
systematically applied before model training.

Dataset Preprocessing

Preprocessing is a critical step to ensure that the
input data is clean, consistent, and suitable for
machine learning algorithms. It involved
duplicate removal, missing value imputation,
categorical encoding, feature standardization,
and outlier detection.

Removing of Duplicates Data

Initial inspection of the ILPD dataset revealed
13 duplicate records, which can lead to
redundancy and inflated model confidence
during training. These duplicate entries were
identified using a pairwise record comparison
technique and subsequently removed to retain
only unique instances. Eliminating duplicates
ensures data integrity and prevents model
overfitting toward frequently repeated patterns.

Handling of Missing Values
Data completeness is crucial for accurate ML
model learning. In the ILPD dataset, missing
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values were found in the A/G ratio feature,
which plays a significant role in assessing liver
functionality. To handle these missing values,
the Multivariate Imputation by Chained
Equations (MICE) method was employed. This
technique was previously employed in multiple
studies to impute missing values [19, 20]. MICE
operates by iteratively modeling each variable
with missing values as a function of other
variables in the dataset, thereby preserving
underlying correlations. This approach was
preferred over mean or median imputation since
it better maintains data variance and
multivariate relationships essential for medical
diagnosis.

Encoding Categorical Data

Machine learning algorithms generally require
numerical input for computation. Therefore, the
categorical ~ feature =~ Gender,  originally
represented as “Male” and “Female,” was
encoded into binary values—1 for Male and O for
Female. This simple label encoding preserves
interpretability while allowing algorithms such
as logistic regression, random forest, and support
vector machines to efficiently process categorical
data.

ZScore Standardization

Since the dataset included features measured in
different scales and magnitudes (e.g., enzyme
levels vs. age), Z-score normalization was applied
to all numerical attributes except Gender. This
standardization technique centers each feature
by subtracting its mean and dividing by its
standard deviation, thus producing zero-mean,
unitvariance features. Z-score normalization
helps algorithms such as k-Nearest Neighbors
(kNN) and Support Vector Machines (SVM)
converge faster and prevents dominance of high-
magnitude variables in the learning process.

Handling of Outliers

Outliers can significantly distort model
behavior, especially in medical datasets where
abnormal readings may not always indicate
pathological conditions. A statistical threshold
of +3 standard deviations from the mean was
employed to detect potential outliers across each
numeric feature. Observations lying beyond this
threshold were excluded from the dataset to
improve model robustness. Figure 1 illustrates
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the distribution of feature values before outlier imputed using the MICE algorithm to maintain
removal, whereas Figure 2 shows the refined dataset consistency. This two-step process
dataset post-cleaning. After exclusion, missing ensured that data  irregularities  were
values arising from deleted records were again systematically mitigated prior to model training.
Age T8 0B Alkphos Sapt
3 12 1 . . B
. 64 . 10 A
@ 10 4 . &l . ! >
24 . -
‘}’*.'.‘ ::_.r. . " . 8 . 8-
L o P i
IR T L 2% gely o T 4 . ’
N E e 0o T iy o [ P TR
Apes, ol =3 | [ SRS RO I A S | 34 «y¥ iy .
B DR e 25 013 i 0| mniatgede i ., ;
oay SARRTH L : | A
=74 " P S .,. .
a . ]
B . e e T e I S e e T e I

Sgot

15
10 :
g u .,

R e

- -
0.

0 200 400 0 200 400 0 200 400 0 200 400

Figure 1: Outliers present in various features before outlier removal (datapoints above +3 and below -

3 are outliers).
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Figure 2: Various features after removal and treatment of outliers.
Dataset Balancing (21, 22]. SMOTE generates synthetic samples by
As Imbalanced datasets can cause bias toward interpolating between existing minority-class
majority classes, resulting in poor classification instances, thereby creating a more balanced data
performance for minority (healthy) cases. To distribution. This approach not only mitigates
address this, the Synthetic Minority Over- overfitting associated with random oversampling
sampling Technique (SMOTE) was employed as but also preserves the geometric structure of the
employed in previous studies for other diseases minority class in the feature space. Following
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SMOTE the dataset exhibited a nearly equal
distribution of liver patient and non-patient
samples, allowing fair model training and
evaluation.

Machine Learning Models Used

Four supervised learning algorithms were
selected based on their demonstrated
effectiveness in prior biomedical classification
studies: Random Forest, k-Nearest Neighbors,
Support Vector Machine, and Gradient
Boosting. Each algorithm offers complementary
advantages,  enabling a
comparison of performance.

comprehensive

Random Forest

The Random Forest (RF) algorithm is an
ensemble learning technique that aggregates the
predictions of multiple decision trees. Each tree
is trained on a random subset of the data and
features, reducing variance and preventing
overfitting. The final decision is determined
through majority voting among the individual
trees. RF is particularly suitable for clinical
datasets because of its robustness to noise and
ability to model complex feature interactions.

kNN

The kNN algorithm classifies new samples based
on the majority label of their k nearest neighbors
in the feature space. The Euclidean distance
metric was used to determine neighborhood
proximity. The model’s performance is sensitive
to the choice of k, which was optimized during
hyperparameter tuning. As a non-parametric
method, kNN adapts well to nonlinear decision
boundaries but benefits significantly from
standardized data, as applied earlier through Z-
score normalization.

SVM

SVM constructs an optimal hyperplane that
separates classes by maximizing the margin

Volume 3, Issue 6, 2025

between them. In this study, the Radial Basis
Function (RBF) kernel was adopted due to its
superior capability to model nonlinear
relationships among liver health indicators.
Regularization parameters were tuned to balance
bias  and

variance, ensuring  optimal

generalization performance on unseen samples.

Gradient Boosting

The Gradient Boosting (GB) algorithm
iteratively builds an ensemble of weak learners,
typically decision trees, where each subsequent
tree attempts to correct the residual errors of the
previous one. The boosting mechanism
improves predictive power by focusing on
difficult-to-classify instances. Hyperparameters
such as learning rate, number of estimators, and
tree depth were tuned to achieve maximum
accuracy while avoiding overfitting.

Hyperparameter Tuning

The Model performance is highly dependent on
the optimal configuration of hyperparameters.
Two complementary optimization strategies

were employed—GridSearchCV and Random

Search—to  finetune  model  parameters
systematically.

GridSearchCV  exhaustively — evaluates  all
possible combinations of  predefined

hyperparameter values using cross-validation,
ensuring precise identification of the global
optimum.

Random Search, on the other hand, samples
random combinations from the parameter
space, providing a more computationally
efficient alternative that often yields near-
optimal solutions with reduced execution time.
By using both approaches, this study achieved a
balance between computational efficiency and
performance optimization.

Table 1: Performance Comparison of Machine Learning Models for Liver Disease Diagnosis

Accura Precision  Recall F1Score 95% CI 95% CI

ML Model (%) &y %) %) %) Low High p-value
Random Forest 83.15 87.65 81.81 84.63 78.18 88.12 4.48E-15
KNN 75.35 84.78 64.38 73.18 69.63 81.07 6.30E-08
SVM 77.18 88.43 65.29 75.12 71.61 82.75 2.33E-09
Gradient Boosting 79.02 82.53 78.14 80.27 73.61 84.42 6.11E-11
Random Forest

(GridSearchCV) 83.61 90.72 79.06 84.49 78.69 88.52 1.38E-15
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SVM(GndSearchCV) 7718 8843 65.29 75.12 7161 8275  2.33E09
KNN (GridSearchCV) 8039 91.93 69.88 79.40 7512 8566  3.15E12
((}Grficéise:;chc\%oo“ing 77.18 79.92 77.22 78.55 7161 8275  2.33E09
}El;fc?;?nSearchC{?)reSt 84.52 90.33 81.81 85.86 7972 8932 1.21E16
(S}Xif domSearchCyy 7164 8548 69.88 7690 7211 8317  9.68E-10
(G}{;fézrisemﬁg‘\’i;mg 7672 79.63 7630 77193 7112 8233 5.48E09
RESULTS AND DISCUSSION Model Evaluation Metrics

This section presents the experimental outcomes Model performance was quantitatively evaluated

of the implemented machine learning models using four key metrics: Accuracy, Precision,

and discusses their comparative performance in
diagnosing liver disease using the Indian Liver
Patient Dataset (ILPD). The evaluation
emphasizes the influence of preprocessing, class

Recall, and Flscore [23]. Additionally, 95%
Confidence Intervals (CIs) and p-values were
computed to ensure statistical significance. The
results summarized in

balancing, and hyperparameter optimization on

model accuracy, precision, recall, and Fl-score.
Table 1 provide a comparative overview of the
baseline models and their optimized variants.

100 +

PEMs (%)

Precision Recall F1-Score

Accuracy

BRF @KNN ©OSVM OGB

Figure 3: Performance Evaluation Metrics (PEMs) of Baseline ML Models.
The baseline machine learning models—
Random Forest (RF), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and

Comparative Analysis of Baseline Models
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Gradient Boosting (GB)—were first evaluated on
the pre-processed and balanced dataset. Their
PEMS are shown in Figure 3. Among these, the
Random Forest classifier exhibited the highest
baseline performance with an accuracy of
83.15% and Fl-score of 84.63%, outperforming
all other models. Its robust ensemble structure,
which combines multiple decision trees through
bagging, effectively reduces overfitting and
captures nonlinear feature interactions.

The Gradient Boosting model achieved a
moderate accuracy of 79.02%, slightly lower
than RF, yet demonstrated consistent precision
and recall balance (82.53% and 78.14%,
respectively). Its stagewise additive training
allows error correction from previous learners,
but without proper parameter tuning, it can be
susceptible to overfitting or bias toward the
dominant class.

The Support Vector Machine (SVM) classifier
produced an accuracy of 77.18% with the

100 -+
90
80
70
60

50

PEMs (%)

40

30

20

10

highest precision (88.43%) among all base
models, but a relatively low recall (65.29%). This
indicates that SVM’s decision boundary was
more  conservative—favoring  the  correct
classification of healthy individuals while
missing certain disease cases. The KNN model,
on the other hand, performed with the lowest
accuracy (75.35%) and recall (64.38%),
suggesting sensitivity to noise and the curse of
dimensionality. These results collectively affirm
that ensemble-based classifiers are better suited
for structured clinical data with mixed feature
distributions.

Effect of Hyperparameter Optimization
Hyperparameter tuning was performed using
two techniques—GridSearchCV and
RandomSearchCV—to identify optimal
parameter configurations that maximize model
performance.

Accuracy

B RF (GridSearchCV) @ SVM (GridSearchCV)

Precision

Recall F1-Score

O KNN (GridSearchCV) O GB (GridSearchCV)

Figure 4: PEMs of ML Models after GridSearchCV Optimization.

GridSearchCV Optimization

GridSearchCV exhaustively explored all possible
parameter combinations within predefined
grids. Although computationally expensive, it
yielded moderate improvements in several
models as shown in Figure 4. KNN, for instance,
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improved from 75.35% to 80.39% accuracy,
indicating that tuning of the neighborhood size
(k) and distance metric significantly enhanced its
classification consistency. The Random Forest
model saw a slight improvement from 83.15% to
83.61%, demonstrating its robustness even
under different configurations. However, other
models such as SVM and Gradient Boosting
exhibited marginal or negligible changes,
suggesting that their default parameter settings
were already near optimal for this dataset.

RandomSearchCV Optimization
100 +

90

80

70

60

50

PEMs (%)

40

30

20

10

Accuracy

B RF (RandomSearchCV)

RandomSearchCV produced more substantial
performance gains while requiring fewer
computational resources as shown in Figure 5.
The Random Forest (RandomSearchCV) model
achieved the highest overall accuracy (84.52%)
and Fl-score (85.86%), with a narrow 95%
confidence interval (79.72-89.32) and highly
significant p-value (1.21E-16). The improvement
can be attributed to optimized tuning of the
number of estimators, maximum depth, and
feature  split  criteria, enabling  better
generalization and reduced variance.

Precision

@ SVM (RandomSearchCV)

Recall F1-Score

O GB (RandomSearchCV)

Figure 5: PEMs of ML Models after RandomSearchCV Optimization.

The KNN (RandomSearchCV) model achieved
an  Flscore of 79.40%, surpassing its
GridSearchCV counterpart, demonstrating that
randomized sampling can uncover effective
parameter  combinations  beyond  grid
boundaries. In contrast, SVM and Gradient
Boosting experienced only minor performance
fluctuations, reinforcing the observation that
these models are less sensitive to hyperparameter
search variability. Overall,

RandomSearchCV proved to be more efficient
and effective than exhaustive grid search,

particularly in optimizing models with a large
parameter space.

Statistical Validation

Statistical tests confirmed the reliability of the
observed results. All models recorded p-values
substantially below the 0.05 threshold,
confirming that performance differences were
statistically significant and not due to random
chance. The Random Forest model exhibited
the narrowest confidence interval, indicating
high result stability and low variance across
multiple validation folds. Conversely, the wider
intervals of KNN and Gradient Boosting reflect
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h1gher variability, likely caused by sensitivity to
data distribution and sample imbalance.

These findings substantiate the robustness of
ensemble-based methods, particularly Random
Forest, which maintained
classification accuracy despite variations in data
partitions during cross-validation.

consistent

Discussion
The comparative evaluation as shown in Figure

algorithms outperform traditional non-ensemble
methods in diagnosing liver disease from
structured tabular data. Random Forest’s
bagging strategy enhances resilience against
noise and variability, enabling it to generalize
effectively across unseen samples. Its balanced
precision-recall  profile reliable
detection of both positive and negative cases—an
essential requirement in medical applications
where false negatives can have serious clinical

ensures

6 demonstrates that ensemble learning consequences.
—@—Accuracy —@— Precision Recall F1-Score
95
GB
90
(RandomSearchCV) 85/ ks
/é/
75
SVM
70
(RandomSearchCV) Ve / 65 .
60
55
50
RF (RandomSearchCV) GB
X\ N — A/l
GB (GridSearchCV) \ - = RF (GridSearchCV)
\\‘ __,/"'@//
o
KNN (GridSearchCV) SVM (GridSearchCV)

Figure 6: Comparative Analysis of all the ML Models including Baseline ML Models, After
GridSearchCV Optimization, and RandomSearch Optimization.

The results also highlight the importance of
preprocessing and class balancing. Techniques
such  as MICE  imputation,  Z-score
standardization, and SMOTE balancing were
instrumental in achieving stable performance.
Outlier removal reduced data skewness, while
SMOTE ensured that minority class samples
were adequately represented, thereby mitigating
bias and improving recall across all models.

Furthermore, hyperparameter tuning was shown
to be a decisive factor in model performance
enhancement. The superior outcomes from
RandomSearchCV indicate that stochastic

exploration of the parameter space can yield
more effective configurations than exhaustive
grid searches, especially in scenarios with limited
data.

Overall, the findings validate the methodological
framework, confirming that a carefully designed
pipeline—combining advanced preprocessing,
balancing, and adaptive parameter
optimization—substantially =~ enhances  the
diagnostic performance of machine learning
models for liver disease prediction.

The Random Forest model optimized with
RandomSearchCV  demonstrated the best
overall results, achieving 84.52% accuracy and

85.86% Fl-score, followed by the Gradient

class
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Boosting and KNN models. The improvements
obtained through hyperparameter optimization
and data refinement confirm that model
performance can be substantially enhanced
without the need for deep neural architectures.
These results establish ensemble-based machine

\

learning as a practical and interpretable solution
for early liver disease diagnosis, especially in
clinical transparency,
computational efficiency, and reliability are
paramount.

environments where

CONCLUSION

In conclusion, this research demonstrates that
integrating advanced preprocessing, dataset
balancing, and hyperparameter optimization
techniques substantially enhances the predictive
performance of machine learning models for
liver disease diagnosis. Among the evaluated
classifiers, the optimized Random Forest model
exhibited superior performance with an accuracy
of 84.52%, alongside high precision, recall, and
Fl-score values, confirming its robustness and
generalization  capability. The  systematic
application of MICE for imputing missing data,
Z-score normalization, outlier removal, and
SMOTE-based balancing collectively
contributed to the model’s improved diagnostic
reliability. These findings emphasize the
significance of data refinement and model
optimization in developing
efficient Al-driven diagnostic systems. Future
should extend this work by
incorporating larger and more diverse datasets,
hybrid deep learning frameworks, and
explainable Al mechanisms to further enhance
transparency, interpretability, and
deployment potential in real-world healthcare
environments.

accurate and

research

clinical
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