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ABSTRACT 
Liver diseases represent a major global health burden, contributing to millions of deaths annually 
due to delayed diagnosis and inadequate clinical screening mechanisms. Early and reliable 
identification of liver disorders is therefore critical to improve patient outcomes and reduce 
healthcare costs. This study proposes an optimized machine learning (ML)-based diagnostic 
framework to enhance predictive performance using systematic preprocessing, dataset balancing, 
and hyperparameter tuning. The Indian Liver Patient Dataset (ILPD) from the UCI Machine 
Learning Repository was employed to evaluate several ML models, including Random Forest (RF), 
Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Gradient Boosting (GB). 
Rigorous data preprocessing involved duplicate removal, missing value imputation using 
Multivariate Imputation by Chained Equations (MICE), Z-score standardization, and outlier 
elimination. Synthetic Minority Oversampling Technique (SMOTE) was applied to address class 
imbalance, while GridSearchCV and RandomizedSearchCV were used for hyperparameter 
optimization. The optimized Random Forest model achieved the highest accuracy of 84.52%, 
outperforming other classifiers in precision (90.33%), recall (81.81%), and F1-score (85.86%), 
with a statistically significant p-value of 1.21×10⁻¹⁶. The findings underscore the effectiveness of 
model optimization and balanced data handling in improving diagnostic accuracy for liver disease. 
The proposed approach provides a robust foundation for intelligent decision-support systems in 
clinical environments and paves the way for further integration of data-driven methodologies in 
hepatology. 
Keywords: Liver Disease, Classification, Machine Learning, Support Vector Machine, k-Nearest 
Neighbour, Random Forest. 

 
INTRODUCTION 
Liver disease encompasses a broad spectrum of 
disorders—ranging from non‐alcoholic fatty liver 
disease (NAFLD) and viral hepatitis to cirrhosis 
and hepatocellular carcinoma—that together 

contribute substantially to global morbidity and 
mortality [1]. Traditional diagnostic practices 
rely on a combination of blood‐biochemical 
markers, ultrasound or CT/MRI imaging, and, 
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in some cases, invasive liver biopsy. However, 
many patients are diagnosed at advanced stages, 
when therapeutic options become more limited 
or outcomes worse. 
In recent years, the rapid proliferation of digital 
medical records, laboratory test results and 
medical‐imaging data has created fertile ground 
for artificial intelligence (AI) and machine‐
learning (ML) methods to support early 
detection [2] and more accurate classification of 
liver disease [3], Alzheimer disease [4] and heart 
disease [5]. Numerous studies have applied 
supervised learning techniques such as support 
vector machines (SVMs), decision trees, random 
forests (RFs) and deep neural networks, to 
structured clinical datasets or imaging 
modalities, demonstrating promising albeit 
varied performance. For example, Tanwar & 
Rahman review the progress of machine learning 
in the diagnosis of liver disease and outline the 
major opportunities and limitations in the field 
[6]. Similarly, surveys of liver‐disease prediction 
studies find a dominance of algorithms such as 
RF, CNN and SVM across structured and 
imaging data [7].  
Despite this progress, several key challenges 
remain in achieving clinically reliable, 
generalizable ML models for liver disease 
diagnosis. First, many studies suffer from limited 
dataset sizes, imbalance in disease vs healthy 
classes, and narrow representation of patient 
populations, impairing real‐world applicability 
and external validity. Second, many pipelines 
stop at model accuracy, but pay insufficient 
attention to issues of interpretability, 
transparency, and integration with clinical 
workflows, factors that are critical for adoption 
in medical settings. Third, variability in input 
data types (e.g., imaging vs biochemical vs 
demographic) and heterogeneous preprocessing 
practices hamper reproducibility and 
comparability across studies. In particular, as 
noted by Gupta et. al.,  in their survey of liver 
disease prediction using machine learning, 
standardization of feature engineering, handling 
of missing data, class imbalance and validation 
protocols remain areas for improvement [8].  
Given these challenges, there is a strong 
imperative to develop enhanced machine‐
learning frameworks that  

 Maximize diagnostic performance in 
terms of performance evaluation metrics (PEMs) 
i.e., accuracy, precision, recall and F1-Score. 
 Robustly handle the complexities of 
real‐world clinical datasets (missingness, 
heterogeneity, imbalance). 
 Provide interpretable outputs suited for 
clinician review and action.  
The contributions of the present work are 
framed in this context. Specifically, we propose a 
methodology to enhance the performance of 
machine learning models for liver disease 
diagnosis, by integrating advanced preprocessing 
alongside hyperparameter tuning using 
GridSearchCV and RandomSearchCV. 
In the remaining sections of this article, Section 
II reviews relevant background literature, 
Section III describes the dataset, preprocessing 
and model architecture, Section IV reports 
experimental results and discussion, Section V 
discusses implications and limitations, and 
Section VI concludes with future directions. 
 
RELATED WORK 
The integration of machine learning (ML) into 
healthcare diagnostics has considerably 
advanced the early detection of liver disorders by 
identifying hidden data patterns that may not be 
apparent through conventional laboratory 
analysis. Recent investigations have emphasized 
improving diagnostic reliability by combining 
data preprocessing, feature selection, and 
classification optimization. Singh et al. [9] 
highlighted that applying feature selection 
techniques to the Indian Liver Patient Dataset 
(ILPD) substantially improves classification 
accuracy when using standard algorithms such as 
logistic regression (LR), random forest (RF), and 
support vector machines (SVM). Their 
comparative study demonstrated that the 
inclusion of optimal attribute subsets enhanced 
LR accuracy to 74.36%, underscoring the 
influence of data-driven feature selection in liver 
disease classification. 
Expanding on this foundation, Ghosh et al. [10] 
evaluated a broad range of algorithms including 
LR, SVM, XGBoost, AdaBoost, K-Nearest 
Neighbors (KNN), and decision trees, on 
chronic liver disease prediction. Their work 
reported that RF achieved the highest accuracy 
(83.77%) and F1-score (90.16%), confirming the 
robustness of ensemble learning in managing 
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nonlinear relationships among biochemical 
indicators. Similarly, Dritsas and Trigka [11] 
demonstrated that ensemble-based voting 
classifiers, when coupled with data balancing 
methods such as SMOTE and cross-validation, 
outperformed individual classifiers, yielding an 
AUC of 88.4%. These findings collectively 
reinforce that combining classifiers and 
employing data-resampling approaches can 
mitigate imbalance issues prevalent in medical 
datasets. 
While these efforts have largely focused on 
structured datasets, Sorino et al. [12] extended 
the domain by incorporating anthropometric 
and biochemical indicators for the prediction of 
Non-Alcoholic Fatty Liver Disease (NAFLD). 
Their comparison of eight ML algorithms under 
multiple predictor models revealed SVM as the 
most stable classifier, achieving 68–77% 
accuracy with minimal variance, thus 
demonstrating its adaptability for real-world 
clinical screening. Dalal et al. [13] further 
advanced this paradigm by integrating 
hyperparameter-tuned eXtreme Gradient 
Boosting (XGBoost) with conventional decision 
trees and chi-square automated interaction 
detection. Their hybrid model attained 
improved accuracy (73.24%), emphasizing the 
value of boosting strategies in refining diagnostic 
precision and aiding early disease intervention. 
Gupta et al. [14] reaffirmed the significance of 
feature engineering by comparing seven 
classifiers, including gradient boosting, 
LightGBM, and RF, on the ILPD dataset. They 
observed that RF remained a reliable performer 
(accuracy = 63%), though its precision and recall 
values indicated a need for further optimization, 
especially in handling high-dimensional and 
correlated features. In contrast, Azam et al. [15] 
experimented with a hybrid approach using 
KNN, SVM, decision tree, and perceptron 
models. Their evaluation revealed KNN as the 
most effective, achieving 74% accuracy after 
feature tuning, thereby validating the merit of 
local-instance-based learning for biomedical 
data. 
Complementing these works, Geetha and 
Arunachalam [16] focused on early-stage disease 
classification between healthy and affected 
individuals using logistic regression and SVM. 
Their analysis demonstrated that SVM achieved 
superior accuracy (75.04%) and precision 

(77.09%), highlighting the importance of 
margin-based optimization for small-sample 
medical datasets. Rele and Patil [17] presented a 
more comprehensive comparison among LR, 
RF, KNN, SVM, and XGBoost, observing that 
SVM again dominated with an accuracy of 77% 
and F1-score of 82%. Notably, despite the lower 
AUC value, their results emphasized SVM’s 
consistency in capturing complex nonlinear 
decision boundaries when applied to clinical 
datasets with heterogeneous attributes. In a 
broader comparative framework, Naseem et al. 
[18] examined ten diverse classifiers—including 
RF, SVM, multilayer perceptron (MLP), naïve 
Bayes, and Forest-PA—across both UCI and 
GitHub liver datasets. Their results confirmed 
RF as the best performer on the UCI dataset 
(accuracy ≈ 72.17%) and SVM as the top model 
on GitHub data (accuracy ≈ 71.36%). The 
inclusion of multiple datasets strengthened the 
generalizability of their conclusions and 
provided a reference benchmark for future 
diagnostic research. 
Collectively, these studies provide several key 
insights. First, the predictive performance of ML 
models for liver disease heavily depends on the 
quality of preprocessing, especially in feature 
selection and data balancing. Second, ensemble 
techniques (e.g., RF, XGBoost, and voting 
classifiers) consistently outperform single-model 
classifiers due to their ability to aggregate 
decision boundaries and reduce variance. Third, 
despite achieving moderate accuracy levels 
(typically between 70–85%), most studies reveal 
limitations in generalization across datasets and 
lack explainability mechanisms critical for 
clinical adoption. Therefore, the current 
research aims to enhance the performance and 
interpretability of ML models through a unified 
framework that integrates optimized 
preprocessing, ensemble learning, and 
explainable decision support to advance the 
reliability of liver disease diagnosis. 
 
METHODOLOGY 
The methodological framework adopted in this 
study was designed to enhance the predictive 
performance and reliability of machine learning 
models for liver disease diagnosis. The complete 
workflow consisted of dataset collection, 
preprocessing, data balancing, model training, 
and hyperparameter optimization. Each phase 
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was carefully executed to ensure that the 
resulting models generalized well across diverse 
clinical samples and minimized bias induced by 
data inconsistencies. 
 
Dataset Collection 
The dataset used in this study is the Indian Liver 
Patient Dataset (ILPD), which was obtained 
from the UCI Machine Learning Repository, a 
well-known open-access platform for 
benchmarking predictive algorithms. The 
dataset comprises 583 instances and 10 features 
relevant to liver health indicators, including 
biochemical markers such as Total Bilirubin, 
Direct Bilirubin, Alkaline Phosphatase 
(AlkPhos), Serum Glutamic-Pyruvic 
Transaminase (SGPT), Serum Glutamic-
Oxaloacetic Transaminase (SGOT), Total 
Proteins, Albumin, and Albumin/Globulin 
(A/G) ratio. Additionally, the dataset includes 
demographic attributes such as Age and Gender, 
with the target variable denoting whether the 
individual is a liver patient (1) or not (2). 
The dataset’s inherent imbalance, where patient 
records substantially outnumber healthy cases 
necessitated data-level intervention to prevent 
bias during model learning. Thus, appropriate 
preprocessing and balancing techniques were 
systematically applied before model training. 
 
Dataset Preprocessing 
Preprocessing is a critical step to ensure that the 
input data is clean, consistent, and suitable for 
machine learning algorithms. It involved 
duplicate removal, missing value imputation, 
categorical encoding, feature standardization, 
and outlier detection. 
 
Removing of Duplicates Data 
Initial inspection of the ILPD dataset revealed 
13 duplicate records, which can lead to 
redundancy and inflated model confidence 
during training. These duplicate entries were 
identified using a pairwise record comparison 
technique and subsequently removed to retain 
only unique instances. Eliminating duplicates 
ensures data integrity and prevents model 
overfitting toward frequently repeated patterns. 
 
Handling of Missing Values 
Data completeness is crucial for accurate ML 
model learning. In the ILPD dataset, missing 

values were found in the A/G ratio feature, 
which plays a significant role in assessing liver 
functionality. To handle these missing values, 
the Multivariate Imputation by Chained 
Equations (MICE) method was employed. This 
technique was previously employed in multiple 
studies to impute missing values [19, 20]. MICE 
operates by iteratively modeling each variable 
with missing values as a function of other 
variables in the dataset, thereby preserving 
underlying correlations. This approach was 
preferred over mean or median imputation since 
it better maintains data variance and 
multivariate relationships essential for medical 
diagnosis. 
 
Encoding Categorical Data 
Machine learning algorithms generally require 
numerical input for computation. Therefore, the 
categorical feature Gender, originally 
represented as “Male” and “Female,” was 
encoded into binary values—1 for Male and 0 for 
Female. This simple label encoding preserves 
interpretability while allowing algorithms such 
as logistic regression, random forest, and support 
vector machines to efficiently process categorical 
data. 
 
Z-Score Standardization 
Since the dataset included features measured in 
different scales and magnitudes (e.g., enzyme 
levels vs. age), Z-score normalization was applied 
to all numerical attributes except Gender. This 
standardization technique centers each feature 
by subtracting its mean and dividing by its 
standard deviation, thus producing zero-mean, 
unit-variance features. Z-score normalization 
helps algorithms such as k-Nearest Neighbors 
(kNN) and Support Vector Machines (SVM) 
converge faster and prevents dominance of high-
magnitude variables in the learning process. 
 
Handling of Outliers 
Outliers can significantly distort model 
behavior, especially in medical datasets where 
abnormal readings may not always indicate 
pathological conditions. A statistical threshold 
of ±3 standard deviations from the mean was 
employed to detect potential outliers across each 
numeric feature. Observations lying beyond this 
threshold were excluded from the dataset to 
improve model robustness. Figure 1 illustrates 
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the distribution of feature values before outlier 
removal, whereas Figure 2 shows the refined 
dataset post-cleaning. After exclusion, missing 
values arising from deleted records were again 

imputed using the MICE algorithm to maintain 
dataset consistency. This two-step process 
ensured that data irregularities were 
systematically mitigated prior to model training. 

 

 
Figure 1: Outliers present in various features before outlier removal (datapoints above +3 and below -

3 are outliers). 
 

 
Figure 2: Various features after removal and treatment of outliers.

Dataset Balancing 
As Imbalanced datasets can cause bias toward 
majority classes, resulting in poor classification 
performance for minority (healthy) cases. To 
address this, the Synthetic Minority Over-
sampling Technique (SMOTE) was employed as 
employed in previous studies for other diseases 

[21, 22]. SMOTE generates synthetic samples by 
interpolating between existing minority-class 
instances, thereby creating a more balanced data 
distribution. This approach not only mitigates 
overfitting associated with random oversampling 
but also preserves the geometric structure of the 
minority class in the feature space. Following 
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SMOTE, the dataset exhibited a nearly equal 
distribution of liver patient and non-patient 
samples, allowing fair model training and 
evaluation. 
 
Machine Learning Models Used 
Four supervised learning algorithms were 
selected based on their demonstrated 
effectiveness in prior biomedical classification 
studies: Random Forest, k-Nearest Neighbors, 
Support Vector Machine, and Gradient 
Boosting. Each algorithm offers complementary 
advantages, enabling a comprehensive 
comparison of performance. 
 
Random Forest 
The Random Forest (RF) algorithm is an 
ensemble learning technique that aggregates the 
predictions of multiple decision trees. Each tree 
is trained on a random subset of the data and 
features, reducing variance and preventing 
overfitting. The final decision is determined 
through majority voting among the individual 
trees. RF is particularly suitable for clinical 
datasets because of its robustness to noise and 
ability to model complex feature interactions. 
 
kNN 
The kNN algorithm classifies new samples based 
on the majority label of their k nearest neighbors 
in the feature space. The Euclidean distance 
metric was used to determine neighborhood 
proximity. The model’s performance is sensitive 
to the choice of k, which was optimized during 
hyperparameter tuning. As a non-parametric 
method, kNN adapts well to nonlinear decision 
boundaries but benefits significantly from 
standardized data, as applied earlier through Z-
score normalization. 
SVM 
SVM constructs an optimal hyperplane that 
separates classes by maximizing the margin 

between them. In this study, the Radial Basis 
Function (RBF) kernel was adopted due to its 
superior capability to model nonlinear 
relationships among liver health indicators. 
Regularization parameters were tuned to balance 
bias and variance, ensuring optimal 
generalization performance on unseen samples. 
 
Gradient Boosting 
The Gradient Boosting (GB) algorithm 
iteratively builds an ensemble of weak learners, 
typically decision trees, where each subsequent 
tree attempts to correct the residual errors of the 
previous one. The boosting mechanism 
improves predictive power by focusing on 
difficult-to-classify instances. Hyperparameters 
such as learning rate, number of estimators, and 
tree depth were tuned to achieve maximum 
accuracy while avoiding overfitting. 
 
Hyperparameter Tuning 
The Model performance is highly dependent on 
the optimal configuration of hyperparameters. 
Two complementary optimization strategies 
were employed—GridSearchCV and Random 
Search—to fine-tune model parameters 
systematically. 
GridSearchCV exhaustively evaluates all 
possible combinations of predefined 
hyperparameter values using cross-validation, 
ensuring precise identification of the global 
optimum. 
Random Search, on the other hand, samples 
random combinations from the parameter 
space, providing a more computationally 
efficient alternative that often yields near-
optimal solutions with reduced execution time. 
By using both approaches, this study achieved a 
balance between computational efficiency and 
performance optimization. 

 
Table 1: Performance Comparison of Machine Learning Models for Liver Disease Diagnosis 

ML Model 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

95% CI 
Low 

95% CI 
High 

p-value 

Random Forest 83.15 87.65 81.81 84.63 78.18 88.12 4.48E-15 
KNN 75.35 84.78 64.38 73.18 69.63 81.07 6.30E-08 
SVM 77.18 88.43 65.29 75.12 71.61 82.75 2.33E-09 
Gradient Boosting 79.02 82.53 78.14 80.27 73.61 84.42 6.11E-11 
Random Forest 
(GridSearchCV) 

83.61 90.72 79.06 84.49 78.69 88.52 1.38E-15 
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SVM (GridSearchCV) 77.18 88.43 65.29 75.12 71.61 82.75 2.33E-09 
KNN (GridSearchCV) 80.39 91.93 69.88 79.40 75.12 85.66 3.15E-12 
Gradient Boosting 
(GridSearchCV) 

77.18 79.92 77.22 78.55 71.61 82.75 2.33E-09 

Random Forest 
(RandomSearchCV) 

84.52 90.33 81.81 85.86 79.72 89.32 1.21E-16 

SVM 
(RandomSearchCV) 

77.64 85.48 69.88 76.90 72.11 83.17 9.68E-10 

Gradient Boosting 
(RandomSearchCV) 

76.72 79.63 76.30 77.93 71.12 82.33 5.48E-09 

 
RESULTS AND DISCUSSION 
This section presents the experimental outcomes 
of the implemented machine learning models 
and discusses their comparative performance in 
diagnosing liver disease using the Indian Liver 
Patient Dataset (ILPD). The evaluation 
emphasizes the influence of preprocessing, class 
balancing, and hyperparameter optimization on 
model accuracy, precision, recall, and F1-score. 

 
Model Evaluation Metrics 
Model performance was quantitatively evaluated 
using four key metrics: Accuracy, Precision, 
Recall, and F1-score [23]. Additionally, 95% 
Confidence Intervals (CIs) and p-values were 
computed to ensure statistical significance. The 
results summarized in 

 Table 1 provide a comparative overview of the 
baseline models and their optimized variants. 

 

 
Figure 3: Performance Evaluation Metrics (PEMs) of Baseline ML Models. 

 

 
Comparative Analysis of Baseline Models 

The baseline machine learning models—
Random Forest (RF), K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), and 



 Volume 3, Issue 6, 2025 
 

  

https://nmsreview.org                   | Khan et al., 2025 | Page 164 

Gradient Boosting (GB)—were first evaluated on 
the pre-processed and balanced dataset. Their 
PEMS are shown in Figure 3. Among these, the 
Random Forest classifier exhibited the highest 
baseline performance with an accuracy of 
83.15% and F1-score of 84.63%, outperforming 
all other models. Its robust ensemble structure, 
which combines multiple decision trees through 
bagging, effectively reduces overfitting and 
captures nonlinear feature interactions. 
The Gradient Boosting model achieved a 
moderate accuracy of 79.02%, slightly lower 
than RF, yet demonstrated consistent precision 
and recall balance (82.53% and 78.14%, 
respectively). Its stage-wise additive training 
allows error correction from previous learners, 
but without proper parameter tuning, it can be 
susceptible to overfitting or bias toward the 
dominant class. 
The Support Vector Machine (SVM) classifier 
produced an accuracy of 77.18% with the 

highest precision (88.43%) among all base 
models, but a relatively low recall (65.29%). This 
indicates that SVM’s decision boundary was 
more conservative—favoring the correct 
classification of healthy individuals while 
missing certain disease cases. The KNN model, 
on the other hand, performed with the lowest 
accuracy (75.35%) and recall (64.38%), 
suggesting sensitivity to noise and the curse of 
dimensionality. These results collectively affirm 
that ensemble-based classifiers are better suited 
for structured clinical data with mixed feature 
distributions. 
 
Effect of Hyperparameter Optimization 
Hyperparameter tuning was performed using 
two techniques—GridSearchCV and 
RandomSearchCV—to identify optimal 
parameter configurations that maximize model 
performance. 

 

 
Figure 4: PEMs of ML Models after GridSearchCV Optimization. 

 

 
 
 
 

GridSearchCV Optimization 
GridSearchCV exhaustively explored all possible 
parameter combinations within predefined 
grids. Although computationally expensive, it 
yielded moderate improvements in several 
models as shown in Figure 4. KNN, for instance, 
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improved from 75.35% to 80.39% accuracy, 
indicating that tuning of the neighborhood size 
(k) and distance metric significantly enhanced its 
classification consistency. The Random Forest 
model saw a slight improvement from 83.15% to 
83.61%, demonstrating its robustness even 
under different configurations. However, other 
models such as SVM and Gradient Boosting 
exhibited marginal or negligible changes, 
suggesting that their default parameter settings 
were already near optimal for this dataset. 
 
RandomSearchCV Optimization 

RandomSearchCV produced more substantial 
performance gains while requiring fewer 
computational resources as shown in Figure 5. 
The Random Forest (RandomSearchCV) model 
achieved the highest overall accuracy (84.52%) 
and F1-score (85.86%), with a narrow 95% 
confidence interval (79.72–89.32) and highly 
significant p-value (1.21E-16). The improvement 
can be attributed to optimized tuning of the 
number of estimators, maximum depth, and 
feature split criteria, enabling better 
generalization and reduced variance. 

 

 
Figure 5:  PEMs of ML Models after RandomSearchCV Optimization. 

 

The KNN (RandomSearchCV) model achieved 
an F1-score of 79.40%, surpassing its 
GridSearchCV counterpart, demonstrating that 
randomized sampling can uncover effective 
parameter combinations beyond grid 
boundaries. In contrast, SVM and Gradient 
Boosting experienced only minor performance 
fluctuations, reinforcing the observation that 
these models are less sensitive to hyperparameter 
search variability. Overall,  
 
RandomSearchCV proved to be more efficient 
and effective than exhaustive grid search, 

particularly in optimizing models with a large 
parameter space. 
 
Statistical Validation 
Statistical tests confirmed the reliability of the 
observed results. All models recorded p-values 
substantially below the 0.05 threshold, 
confirming that performance differences were 
statistically significant and not due to random 
chance. The Random Forest model exhibited 
the narrowest confidence interval, indicating 
high result stability and low variance across 
multiple validation folds. Conversely, the wider 
intervals of KNN and Gradient Boosting reflect 
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higher variability, likely caused by sensitivity to 
data distribution and sample imbalance. 
These findings substantiate the robustness of 
ensemble-based methods, particularly Random 
Forest, which maintained consistent 
classification accuracy despite variations in data 
partitions during cross-validation. 
 
Discussion 
The comparative evaluation as shown in Figure 
6 demonstrates that ensemble learning 

algorithms outperform traditional non-ensemble 
methods in diagnosing liver disease from 
structured tabular data. Random Forest’s 
bagging strategy enhances resilience against 
noise and variability, enabling it to generalize 
effectively across unseen samples. Its balanced 
precision–recall profile ensures reliable 
detection of both positive and negative cases—an 
essential requirement in medical applications 
where false negatives can have serious clinical 
consequences. 

 

 
Figure 6: Comparative Analysis of all the ML Models including Baseline ML Models, After 

GridSearchCV Optimization, and RandomSearch Optimization. 
 

The results also highlight the importance of 
preprocessing and class balancing. Techniques 
such as MICE imputation, Z-score 
standardization, and SMOTE balancing were 
instrumental in achieving stable performance. 
Outlier removal reduced data skewness, while 
SMOTE ensured that minority class samples 
were adequately represented, thereby mitigating 
bias and improving recall across all models. 

Furthermore, hyperparameter tuning was shown 
to be a decisive factor in model performance 
enhancement. The superior outcomes from 
RandomSearchCV indicate that stochastic 

exploration of the parameter space can yield 
more effective configurations than exhaustive 
grid searches, especially in scenarios with limited 
data. 
Overall, the findings validate the methodological 
framework, confirming that a carefully designed 
pipeline—combining advanced preprocessing, 
class balancing, and adaptive parameter 
optimization—substantially enhances the 
diagnostic performance of machine learning 
models for liver disease prediction. 
The Random Forest model optimized with 
RandomSearchCV demonstrated the best 
overall results, achieving 84.52% accuracy and 
85.86% F1-score, followed by the Gradient 
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Boosting and KNN models. The improvements 
obtained through hyperparameter optimization 
and data refinement confirm that model 
performance can be substantially enhanced 
without the need for deep neural architectures. 
These results establish ensemble-based machine 
learning as a practical and interpretable solution 
for early liver disease diagnosis, especially in 
clinical environments where transparency, 
computational efficiency, and reliability are 
paramount. 
 
CONCLUSION 
In conclusion, this research demonstrates that 
integrating advanced preprocessing, dataset 
balancing, and hyperparameter optimization 
techniques substantially enhances the predictive 
performance of machine learning models for 
liver disease diagnosis. Among the evaluated 
classifiers, the optimized Random Forest model 
exhibited superior performance with an accuracy 
of 84.52%, alongside high precision, recall, and 
F1-score values, confirming its robustness and 
generalization capability. The systematic 
application of MICE for imputing missing data, 
Z-score normalization, outlier removal, and 
SMOTE-based balancing collectively 
contributed to the model’s improved diagnostic 
reliability. These findings emphasize the 
significance of data refinement and model 
optimization in developing accurate and 
efficient AI-driven diagnostic systems. Future 
research should extend this work by 
incorporating larger and more diverse datasets, 
hybrid deep learning frameworks, and 
explainable AI mechanisms to further enhance 
transparency, clinical interpretability, and 
deployment potential in real-world healthcare 
environments. 
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