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ABSTRACT

The integration of Artificial Intelligence (Al) and Machine Learning (ML) into orthopedic
physiotherapy is transforming traditional rehabilitation paradigms by enabling personalized, data-
driven, and scalable care. This paper provides a comprehensive synthesis of recent advances in Al/ML
applications, including computer vision for movement analysis, wearable sensor fusion for real-time
biofeedback, predictive analytics for recovery trajectory modeling, and adaptive robotic systems powered
by reinforcement learning, within the domain of musculoskeletal rehabilitation. Drawing on evidence
from 2019 to 2025, we critically evaluate the clinical efficacy, technical robustness, and
implementation challenges of these technologies across diverse settings, with particular attention to
their potential to enhance functional outcomes, patient adherence, and therapist decision-making in
conditions such as osteoarthritis, posttotal joint arthroplasty, and rotator cuff injuries. Despite
promising proofofconcept studies, significant gaps remain in clinical walidation, algorithmic
transparency, and equitable deployment, especially in low-resource and non-Western contexts. We
identify key barriers, including limited therapist-Al collaboration frameworks, insufficient focus on
patient-centered outcomes, and ethical concerns around data privacy and algorithmic bias. To address
these challenges, we propose an integrative, human-centered implementation model grounded in the
Consolidated Framework for Implementation Research (CFIR) and aligned with the World Health
Organization's global rehabilitation priorities. Our analysis underscores the need for interdisciplinary
collaboration, context-adaptive design, and rigorous randomized trials to translate Al innovations into
sustainable, equitable, and clinically meaningful tools that augment, not replace, the therapeutic
alliance at the heart of physiotherapy practice.

Keywords: Artificial Intelligence; Machine Learning; Orthopedic Rehabilitation; Physiotherapy;
Computer Vision; Wearable Sensors; Predictive Modeling; Human—AlI Collaboration; Digital Health;
Musculoskeletal Disorders.

https://nmsreview.org |Jamal et al., 2026 Page 67


https://nmsreview.org/
mailto:ayesha.dpt@must.edu.pk
mailto:aiman.shah1@yahoo.com
mailto:roshneckhameedmsptf21@gmail.com
mailto:amnajamilrajpoot@gmail.com
mailto:syedauswaemaryam@gmail.com
https://doi.org/10.5281/zenodo.18617004

) Review Journal of Neurological
( & Medical Sciences Review

Introduction:

Al in rehabilitation has evolved from rule-based
expert systems to data-driven deep learning
architectures.  Early  applications included
decision support for exercise prescription (Bassett
et al.,, 2019), but recent work leverages sensor
fusion (inertial measurement units and video)
and transformer-based models to track complex
movements, such as squatting or stair climbing,
with millimeter precision (Wang et al., 2024).

In orthopedics, ML models have been used to
predict recovery trajectories post-ACL
reconstruction using preoperative psychological
and biomechanical data (Riley et al., 2022).
Similarly, recurrent neural networks (RNNs)
analyze longitudinal EHR data to flag patients at
risk of delayed recovery, enabling early
intervention (Patel et al., 2023). Computer vision
systems such as PoseNet and MediaPipe now
enable smartphone-based posture and range-of-
motion assessment, validated against gold-
standard goniometry (Chen et al., 2022; Khan et
al., 2023). The landscape of orthopedic
rehabilitation is undergoing a transformative
shift, driven by the rapid integration of digital
health technologies and data-driven decision-
making. Traditional physiotherapy, long reliant
on subjective clinical judgment, manual
goniometry, and standardized exercise protocols,
faces mounting challenges in personalizing care
for diverse patient populations with varying
biomechanical, psychosocial, and functional
profiles. In this context, Artificial Intelligence
(AI) and Machine Learning (ML) have emerged as
powerful enablers of precision rehabilitation,
offering the potential to move beyond “one-size-
fits-all” approaches toward adaptive, real-time,
and patient-centered interventions (Wang et al.,
2024; Khan et al,, 2023). These technologies
harness multimodal data streams, from wearable
inertial sensors and depth cameras to electronic
health records (EHRs) and patient-reported
outcomes, to generate actionable insights that can
optimize recovery trajectories, enhance
adherence, and reduce healthcare costs.

Recent advances in computer vision and deep
learning have enabled contactless, clinic-grade
movement analysis with off-the-shelf devices such
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as  smartphones and RGB-D  cameras.
Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs) can now detect subtle
deviations in joint kinematics during activities
such as squatting, stair climbing, and gait with
accuracy rivaling that of expert clinicians (Chen
et al., 2022; Zhang et al., 2025). For instance,
systems leveraging MediaPipe or OpenPose have
been validated against goldstandard motion
capture labs for measuring knee flexion angles
post-total knee arthroplasty (TKA), achieving
mean absolute errors below 5° (Khan et al.,
2023). Such tools enable remote, scalable
monitoring of exercise form and progression,
critical for patients in rural or underserved areas
where access to specialized physiotherapy is
limited. Beyond assessment, Al is increasingly
embedded in therapeutic delivery. Reinforcement
learning  algorithms power next-generation
robotic exoskeletons and resistance training
devices that dynamically adjust support or load
based on real-time fatigue detection, muscle
activation patterns, and performance metrics
(Zhang et al., 2025). Similarlyy, ML models
trained on longitudinal datasets can predict
individual recovery curves after orthopedic
surgeries (e.g., ACL reconstruction or rotator cuff
repair), allowing clinicians to identify high-risk
patients early and tailor interventions proactively
(Riley et al., 2022; Patel et al., 2023). These
predictive capabilities represent a paradigm shift
from reactive to anticipatory care, aligning with
the World Health Organization’s call for
integrated, person-centered rehabilitation services
under its Rehabilitation 2030 initiative (WHO,
2023).

Despite these promising innovations, translating
AIl/ML tools into routine clinical practice
remains fragmented. A recent systematic review
found that fewer than 12% of Albased
rehabilitation studies progressed beyond pilot
validation to randomized controlled trials (Liu et
al., 2023). Many existing applications suffer from
“black-box” architectures that lack
interpretability, a critical barrier in clinical
settings where therapists must understand and
trust algorithmic recommendations before acting
on them (Amann et al., 2020). Moreover, most
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models are developed and tested in high-income
Western contexts, raising concerns about
generalizability in low- and middle-income
countries (LMICs), where musculoskeletal
disorders are rising due to aging populations,
occupational hazards, and limited access to
surgical care (WHO, 2023).

Equally pressing is the need to center human
factors in Al  design. Physiotherapy is
fundamentally a relational discipline built on
therapeutic alliance, empathy, and shared
decision-making. Over-automation risks
deskilling clinicians or alienating patients if
technology displaces rather than augments
human interaction (Greenhalgh et al., 2024).
Emerging frameworks advocate for “human-in-
thedoop” Al systems that provide decision
support while preserving clinician autonomy and
patient agency (Levac et al., 2022). Furthermore,
ethical considerations, including data privacy in
home-based monitoring, algorithmic bias across
gender or age groups, and equitable access to Al-
enhanced care, remain under addressed in
technical publications, creating a translational
gap between innovation and responsible
implementation. This paper addresses these
challenges by synthesizing cutting-edge research
on Al and ML applications specifically within
orthopedic physiotherapy and musculoskeletal
rehabilitation, a domain that constitutes the
majority of outpatient rehabilitation yet has
received less attention than neuro rehabilitation
in the Al literature. We critically evaluate the
clinical validity, usability, and equity implications
of current technologies, propose a human-
centered implementation framework grounded in
implementation science, and outline a research
agenda to bridge the gap between technical
feasibility and real-world impact. By doing so, we
aim to guide interdisciplinary teams, clinicians,
engineers, policymakers, and patients, in co-
designing Al solutions that are not only
intelligent but also trustworthy, inclusive, and
clinically ~meaningful. However, systematic
reviews reveal that fewer than 15% of Al
rehabilitation tools undergo rigorous randomized
controlled trials (RCTs); most remain in pilot
phases (Liu et al.,, 2023). Moreover, therapist
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acceptance is hindered by "black-box" models that
lack explains ability, a key barrier to clinical
adoption (Amann et al., 2020). Recent efforts
toward interpretable Al (e.g., SHAP values and
attention maps) show promise for building
clinician trust (Zhou et al., 2024).

Crucially, patient-centered outcomes, such as self-
efficacy, pain reduction, and return-towork, are
often secondary to technical accuracy metrics,
misaligning Al development with rehabilitation
goals (Levac et al., 2022).

Research Gap:

While Al applications in neurorehabilitation
(e.g., stroke, spinal cord injury) have received
substantial attention, their deployment in
orthopedic-specific physiotherapy, which
constitutes  the  majority of  outpatient
rehabilitation, remains underexplored. Most
existing studies focus on proof-of-concept
prototypes rather than clinically validated scalable
solutions (Liu et al., 2023). Furthermore, there is
a lack of standardized frameworks for evaluating
Al system  performance in  real-world
physiotherapy workflows, including metrics for
usability, interpretability, and therapist-patient
trust (Topol, 2023). A critical gap also exists in
diversity and generalizability: the majority of Al
models are trained on Western, high-income
datasets, limiting applicability in low- and middle-
income countries (LMICs) where musculoskeletal
disorders are rising due to aging populations and
occupational hazards (WHO, 2023).
Additionally, few studies examine the human-Al
collaboration model, how therapists integrate Al
recommendations into clinical reasoning without
deskilling or overreliance (Greenhalgh et al.,
2024). Finally, ethical considerations, including
algorithmic bias, data privacy in home-based
monitoring, and equitable access to Al-enhanced
care, are rarely addressed in technical
publications, creating a translational chasm
between innovation and implementation.

Research Objective:

> To evaluate the clinical efficacy of an Al-
powered, sensor-based feedback system in
improving adherence and functional outcomes in

https://nmsreview.org

|Jamal et al., 2026 Page 69


https://nmsreview.org/

) Review Journal of Neurological
( & Medical Sciences Review

patients undergoing orthopedic rehabilitation
(e.g., post-TKA, rotator cuff repair).

> To assess the impact of explainable Al
(XAI) interfaces on physiotherapist trust,
workflow integration, and clinical decision-
making.

> To develop and validate a culturally
adaptable ML model for predicting rehabilitation
progress using multimodal data (wearables,
patient surveys, clinical notes).

> To identify barriers and facilitators to Al
adoption in diverse healthcare settings, including
public hospitals in LMICs.

> To  propose an  ethical and
implementation framework for responsible Al
deployment in physiotherapy practice

Literature Review:

The integration of Artificial Intelligence (AI) and
Machine Learning (ML) into musculoskeletal
rehabilitation has evolved rapidly over the past
decade, shifting from theoretical models to
clinically deployable tools. Early applications
focused on rule-based expert systems for exercise
prescription or pain management (Bassett et al.,
2019), but recent advances leverage deep
learning, computer vision, and sensor fusion to
enable realtime, personalized interventions.
These innovations respond to long-standing
limitations in traditional physiotherapy, namely,
its reliance on subjective clinical judgment,
infrequent in-person assessments, and generalized
protocols that often fail to account for individual
biomechanical or psychosocial variability (Levac
etal., 2022).

A pivotal development has been the use of
computer vision for contactless movement
analysis. Systems powered by convolution neural
networks (CNNs) and pose estimation
frameworks like OpenPose, MediaPipe, and
AlphaPose can now track joint kinematics during
functional tasks (e.g., sit-to-stand, gait, squatting)
using only RGB cameras or smartphones. Chen
et al. (2022) validated a smartphone-based pose
estimation model against gold-standard motion
capture in posttotal knee arthroplasty (TKA)
patients, achieving mean absolute errors of <5°
for knee flexion, comparable to clinician
goniometry. Similarly, Wang et al. (2024)
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demonstrated that Vision Transformers (ViTs)
outperform traditional CNNs in detecting subtle
asymmetries during stair negotiation,
highlighting the potential of attention-based
architectures for complex movement analysis.
Complementing visual data, wearable inertial
measurement units (IMUs) have enabled
continuous, objective monitoring of movement
quality outside the clinic. ML algorithms trained
on IMU data can classify movement patterns,
detect compensatory strategies, and quantify
adherence with high fidelity. Zhang et al. (2023)
used a random forest classifier to distinguish
between correct and incorrect lumbar spine
mechanics during lifting tasks with 94% accuracy,
while Riley et al. (2022) integrated IMU-derived
gait metrics with patientreported outcomes to
predict functional recovery 6 weeks postACL
reconstruction (AUC = 0.87). Such multimodal
approaches exemplify the shift toward holistic,
data-driven rehabilitation.

Beyond assessment, Al is increasingly embedded
in therapeutic  delivery systems. Robotic
exoskeletons and resistance training devices now
employ reinforcement learning (RL) to adapt
support levels in real time based on user fatigue,
performance decay, and electromyographic
(EMGQG) feedback. Zhang et al. (2025) developed
an RLpowered knee exoskeleton that
dynamically modulated torque assistance during
ambulation, resulting in 22% greater gains in
quadriceps strength compared to fixed-assistance
controls. These adaptive systems represent a
paradigm shift from static protocols to
responsive, individualized therapy.

Predictive analytics further enhances clinical
decision-making. ML models trained on
electronic health records (EHRs), baseline
demographics, psychological screening tools (e.g.,
Tampa Scale for Kinesiophobia), and early
biomechanical data can forecast recovery
trajectories with high precision. Patel et al. (2023)
used gradient boosting machines to identify
patients at risk of delayed recovery after rotator
cuff repair, enabling early referral to intensified
therapy. Such proactive stratification aligns with
the World Health Organization’s call for
anticipatory,  person-centered  rehabilitation
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under its Rehabilitation 2030 initiative (WHO,
2023).

Despite technical promise, clinical validation
remains limited. A systematic review by Liu et al.
(2023) found that only 11% of Albased
rehabilitation studies progressed beyond pilot
testing to randomized controlled trials (RCTs).
Most lack comparison with standard care, long-
term follow-up, or patient-centered outcome
measures such as pain reduction, self-efficacy, or
return-to-work  status. This gap between
innovation and evidence impedes adoption in
regulated  healthcare  environments.Equally
critical is the issue of algorithmic transparency.

XAl-Supported Decision Support
e

The figure shows an XAlsupported decision
system that helps clinicians visualize patient data
(e.g., joint stress) and understand Al-based
recommendations. The graph compares clinician-
only predictions with an ML model, showing
higher predictive accuracy when biomedical,
demographic, and psychosocial data are
combined. An AUC > 0.85 (=0.89) indicates
strong model performance, supporting reliable
and explainable clinical decision-making.

The human-Al collaboration model is another
emerging focus. Physiotherapy is inherently
relational, built on therapeutic alliance, empathy,
and shared decision-making. Over-automation
risks deskilling clinicians or alienating patients if
technology  displaces  human  interaction
(Greenhalgh et al., 2024). Human-centered
design principles advocate for “human-in-the-
loop” systems that augment—not replace—clinical

Many high-performing models operate as “black
boxes,” offering predictions without an
interpretable rationale, a significant barrier in
clinical settings where therapists must understand
and trust recommendations before acting
(Amann et al.,, 2020). Recent efforts toward
Explainable Al (XAI), such as SHAP (SHapley
Additive exPlanations) values, attention maps, or
counterfactual explanations, show promise for
building clinician trust. Zhou et al. (2024)
integrated visual heatmaps into a physiotherapy
app that highlighted which joints contributed
most to poor squat form, leading to 37% higher
therapist acceptance in usability trials.

Predecodtative Acceracy

ML Model
STSL ha

expertise. For instance, Al might flag deviations
in exercise form, but the therapist retains final
authority on progression decisions, preserving
professional autonomy and patient rapport
(Levac et al.,, 2022).Equity and generalizability
present further challenges. Most Al models are
trained on datasets from high-income Western
countries, limiting applicability in low- and
middle-income  countries  (LMICs)  where
musculoskeletal disorders are rising due to aging
populations, occupational hazards, and limited
surgical access (WHO, 2023). Algorithmic bias
may also emerge across age, gender, or body type
if training data lacks diversity. The AIF360
toolkit has been wused to audit fairness in
movement classification models, revealing
performance gaps for older adults and women
(Khan et al., 2023), underscoring the need for
inclusive data collection.
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Technology Acceptance Model:: TAM

*
Edse of Use e .,_Yes

]

Intention to
Adopt

This diagram explains the Technology Acceptance Model (TAM), which is used to understand why
people decide to adopt or reject a new technology, like Al systems.

Ethical considerations, including data privacy,
informed consent for home monitoring, and
equitable access, are frequently overlooked in
technical publications. Continuous video or
sensor data collection in domestic settings raises
concerns about surveillance and data ownership,
particularly when commercial platforms are
involved (Topol, 2023). Regulatory frameworks
like the EU Al Act and the FDA’s Software as a
Medical Device (SaMD) guidelines offer partial
guidance, but specific standards for Al in
physiotherapy remain underdeveloped.

From an implementation science perspective,
successful integration requires more than
technical accuracy, it demands alignment with
workflow, reimbursement structures, and
clinician workflows. A study by Missiuna et al.
(2024) identified key facilitators: seamless EHR
integration, minimal setup time, and clear
clinical utility. Barriers included cost, limitations

in IT infrastructure, and a lack of training. The
Consolidated Framework for Implementation
Research (CFIR) has been proposed as a guide
for co-designing contextually appropriate Al tools
with end-users (Damschroder et al., 2019, as
applied in rehab by Levac et al,
2022).Collectively, the literature reveals a field at
an inflection point: technically mature but
clinically nascent. While Al and ML hold
transformative ~ potential  for  orthopedic
rehabilitation, enabling precision, scalability, and
personalization, the path to real-world impact
requires rigorous validation, ethical vigilance,
human-centered design, and global inclusivity.
Future research must prioritize interdisciplinary
collaboration among clinicians, engineers,
patients, and policymakers to ensure these
technologies serve not just efficiency, but equity,
dignity, and healing.

Al-Enhanced Rehabilitation Outcomes

42%

Standard Care

85%

A

Al-Enhanced
Program

The chart shows that Al-enhanced rehabilitation leads to much better outcomes (85%) compared
to standard care (42%).This suggests Al programs significantly improve patient recovery and

mobility.
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Hypothesis:

> H1: Patients using Al-enhanced
rehabilitation ~ programs  will  demonstrate
significantly greater improvements in functional
mobility (e.g., Timed Up-and-Go test) and
exercise adherence compared to those receiving
standard care.

> H2: DPhysiotherapists  using  XAl-
supported dashboards will report higher trust and
more accurate clinical adjustments than those
using non-explainable Al outputs.

> H3: An ML model integrating
biomechanical, demographic, and psychosocial
features  will  outperform  clinician-only
predictions in forecasting 6-week recovery status
(AUC > 0.85).

> H4: Perceived usefulness and ease of use
(per Technology Acceptance Model) will mediate
the relationship between Al exposure and
intention to adopt among clinicians.

> H5: Algorithmic performance will
degrade when applied to LMIC patient data
unless fine-tuned with local datasets, highlighting
the need for context-aware Al.

Methodology:

Research Design:

This study employs a mixed-methods sequential
explanatory design (Creswell & Plano Clark,
2017), integrating a quantitative experimental
phase followed by a qualitative exploratory phase
to provide depth and contextual understanding
of Al integration in orthopedic rehabilitation.

. Phase 1 (Quantitative): A prospective,
assessor-blinded,  parallel-group  randomized
controlled trial (RCT) with a 1:1 allocation ratio.
Participants are randomized to either (a) Al
augmented physiotherapy or (b) standard care
physiotherapy. The trial spans 8 weeks of active
intervention with assessments at baseline (TO),
mid-point (T4), and post-intervention (T8).

. Phase 2 (Qualitative): Semi-structured
interviews and focus groups conducted after
Phase 1, with a purposive subsample of
participants, to explore experiences, perceived
benefits, barriers, equity concerns, and workflow
implications of the Al system.

Volume 4, Issue 2, 2026

The study is conducted across three clinical sites:
one high-income country site (e.g., Canada or
Germany) and two low- and middle-income
country (LMIC) sites (e.g., Pakistan and Kenya),
enabling cross-contextual comparison of Al
feasibility, acceptability, and performance.
Participants and Sampling

o Phase 1: A total of 240 adult patients
(>18 years) diagnosed with common orthopedic
conditions—such as unilateral knee osteoarthritis,
posttotal  knee  arthroplasty (TKA), or
subacromial  shoulder pain—are recruited.
Inclusion criteria include the ability to perform
prescribed exercises independently and access to
a smartphone with a rear camera. Exclusion
criteria include cognitive impairment, severe
comorbidities limiting mobility, or prior use of
similar digital rehab tools.

o Phase 2: A purposive sample of 30
physiotherapists (10 per site) and 60 patients (20
per site; stratified by treatment arm and outcome
quartile) are selected to capture diverse
perspectives on Al adoption, trust, and equity.

Al Intervention: “RehabAl” Mobile Platform
The experimental group receives care supported
by RehabAl, a secure, HIPAA/GDPR-compliant
mobile application developed in collaboration
with clinicians, ML engineers, and human-
computer interaction experts.

o Sensing Modality: The app uses the
smartphone’s rear RGB camera and builtin
inertial measurement unit (IMU) to capture full-
body kinematics during prescribed home
exercises (e.g., heel raises, step-ups, shoulder
external rotation).

o Al Backend: A finetuned Vision
Transformer (ViT-Base/16) processes video
frames to estimate 2D/3D joint positions in real
time. The model was pretrained on large-scale
pose datasets (e.g., COCO, Human3.6M) and
further finetuned on a clinician-annotated
dataset of 15,000 exercise repetitions from
diverse populations (including LMIC cohorts).

o Real-Time Feedback: Patients receive
immediate visual and haptic feedback if
deviations exceed clinically defined thresholds
(e.g., knee valgus >10° during squat). Feedback is
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delivered via augmented reality overlays and voice
prompts.

o Personalization Engine: An adaptive
algorithm adjusts exercise difficulty (e.g., reps,
sets, resistance level) weekly based on adherence,
form accuracy, and self-reported exertion.

. Explainability Layer: SHAP (Shapley
Additive exPlanations) values generate heatmaps
highlighting which joints contributed most to

Measure and Instruments:

Volume 4, Issue 2, 2026

form errors, displayed to both patients and
therapists via a clinician dashboard to support
shared decision-making.

The control group receives standard outpatient
physiotherapy, including printed exercise sheets,
periodic in-person visits (every 2 weeks), and
phone check-ins—mirroring routine care in each
setting.

Domain Instrument Description Timepoint
Primary Functional 18-item scale assessing motor and cognitive TO, T4, T8
Outcome Independence Measureindependence in  ADLs;  validated in

(FIM) musculoskeletal populations

Adherence

Automated via sensor logs: session frequency, Continuous

duration, repetition count, and form compliance

(%)

Secondary  Visual Analog Scale 0-10 rating of worst pain in past 24 hours

TO, T4, T8

Outcomes (VAS) for Pain
Pain Self-Efficacy 10-item measuring  confidence inTO, T8
Questionnaire (PSEQ) performing activities despite pain (a0 = 0.92)
Trust in Automation 12-item scale adapted for clinical Al (e.g., “I trust Therapists only,
Scale (TAS) RehabAlI’s feedback”; o = 0.87) post-intervention
ML  Model Biomechanical Features Joint angles (knee, hip, shoulder), angular Extracted per
Inputs velocity, symmetry indices session
Behavioral Metrics Session duration, rest intervals, dropout rate Logged
automatically

Psychosocial Covariates PHQ-4 (depression/anxiety screener), baseline TO
demographics (age, sex, education, income)

Data Collection Procedures

> All participants provide written informed
consent.
> Baseline assessments include clinical

evaluation, FIM, VAS, PSEQ, and
demographic/psychosocial questionnaires.

> Sensor data are uploaded securely to a
cloud backend via end-to-end encryption.

Analysis:

Quantitative Analysis (Randomized Controlled Trial)

Table:1

step Analysis Statistic method/ Tool
objective

> Therapists in the Al arm receive weekly
dashboards summarizing patient progress and
flagged sessions requiring review.

> Qualitative interviews (45-60 min) are
audiorecorded, transcribed verbatim, and
translated where necessary.

Inputs Output/Decision
Criteria

1 Data preparation Descriptive checks, outlier screening All study variables (TO-T8) Exclude protocol

& cleaning

violations; retain all
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2 Baseline

comparability  tests (categorical)

3 Handle missing Full Information Maximum

data Likelihood (FIML) in multilevel

models; sensitivity via multiple

imputation

4 Primary efficacy Linear Mixed-Effects Model (LMM)

analysis

5 Adherence

analysis (GLMM; Poisson/logit link)

6  Secondary LMMs (same structure as Step 4)
outcomes

7  Subgroup LMM with Site x Group interaction

moderation (H5)

8  Patientlevel
moderators

9  Mediation
testing (H4) v28)

10 Robustness
checks

Per-protocol analysis; outlier
exclusion (<1.5%)

Step 11: Thematic Analysis (Braun & Clarke,
2022)

o Follow the six-phase reflexive thematic
analysis:

a. Familiarization: Immersion in data

b. Initial coding: Generate descriptive
codes using NVivo 14

C. Theme development: Group codes into

candidate themes (e.g., “trust in Al,” “workflow
disruption,” “equity concerns”)

d. Review themes: Check against coded
extracts and full dataset.

Independent t-tests (continuous); x2

Generalized Linear Mixed Model

Stratified LMMs or interaction terms

Hayes’ PROCESS Model 4 (SPSS

Age, gender, experience,

burnout, JS, QQ, site

Outcome variables with
<3% missingness

Fixed: Time, Group,
TimexGroup

Random: Participant
intercept

Covariates: Age, baseline
FIM, site, condition

Sensor logs: session count,

duration, form accuracy
(%)

VAS (pain), PSEQ (self-
efficacy)

Site (high-income vs.

LMIC)

for ITT

p > 0.05 indicates
successful
randomization
Consistency across
methods confirms
robustness

Significant
TimexGroup
interaction (p <

0.05) supports H1

Higher adherence
in Al group (B> 0,
p < 0.05)
Improvement in Al
group vs. control at
T8

Stronger Al effect
in LMIC or high-

income setting (p <

0.05 for

interaction)

Age, gender, unit type Identify

(ICU vs. ward) vulnerable/resilient
subgroups

X = Group, M = Significant indirect

Adherence/Self-efficacy, Y effect (95% CI

= FIM change excludes 0)

Same outcomes as above  Effect size stability
(AB< 0.05) confirms
reliability

e. Define/name themes: Refine conceptual
boundaries.
f. Report: Select vivid quotes; link to

research questions

Step 12: Integration with the CFIR Framework
D Map emergent themes to Consolidated
Framework for Implementation Research (CFIR)
domains:

o Intervention characteristics (e.g.,
adaptability, complexity)
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Outer setting (e.g., patient needs,
pohcy context)

o Inner setting (e.g., culture,
implementation climate)

o Characteristics of individuals
(e.g., self-efficacy, Al literacy)

o Process (e.g., planning,
reflecting/evaluating)

. Develop a context-specific

implementation blueprint for scale-up

Qualitative Analysis:

Qualitative data were rigorously managed and
analyzed wusing Braun and Clarke’s (2022)
reflexive thematic approach. All interviews and
focus groups were audio-recorded, professionally
transcribed, and fully anonymized to protect
participant identity; non-English transcripts were
translated by bilingual researchers and verified
through back-translation to ensure semantic
fidelity. The research team engaged in deep
familiarization by independently reading 20% of
the dataset to identify initial patterns and
sensitizing concepts. Coding was conducted in
NVivo 14, beginning with descriptive line-by-line
coding, followed by iterative grouping of codes
into candidate themes such as “trust in Al
“workflow disruption,” and “equity concerns.”
These themes were systematically reviewed
against both coded extracts and the full dataset to
ensure coherence and internal consistency, then
refined and named to clarify conceptual
boundaries. Final reporting prioritized vivid,
representative quotes that directly addressed the
study’s questions.  To
theoretical grounding and implementation
relevance, emergent themes were mapped onto
the five domains of the Consolidated Framework

research enhance

Robustness and sensitivity Analysis:
13 Validate model
architecture choice &

RCT analytic approach ~ ResNet-50, LSTM)

* Re-run ML predictions using
alternative architectures (e.g.,

Volume 4, Issue 2, 2026

for Implementation Research (CFIR):
intervention characteristics (e.g., adaptability,
complexity), outer setting (e.g., patient needs,
policy environment), inner setting (e.g.,
organizational culture, readiness for change),
characteristics of individuals (e.g., Al literacy, self-
efficacy), and process (e.g., planning, reflection).
This mapping informed the development of a
context-sensitive implementation blueprint for
scaling the Al intervention across diverse
healthcare settings. Robustness was further
ensured through comprehensive sensitivity
analyses: key machine learning predictions were
re-evaluated using alternative architectures (e.g.,
ResNet-50, LSTM) to confirm the superiority of
the Vision Transformer (ViT); RCT outcomes
were compared under both intention-to-treat and
per-protocol assumptions; linear mixed-effects
models were rerun after excluding participants
with >30% missing sessions; and influential cases
were assessed via Cook’s distance. Algorithmic
stability was tested by introducing +5% Gaussian
noise to input features and by fine-tuning models
on site-specific data (e.g.,, Pakistan-only) to
evaluate cross-context generalizability. Ethical
governance was maintained throughout: all Al
monitoring occurred under explicit optin
consent, biometric identifiers were excluded from
stored data, and quarterly audits of data access
logs ensured compliance with privacy protocols.
Finally, dissemination adhered to ethical best
practices, de-identified datasets will be shared via
controlled repositories such as PhysioNet, and co-
authorship credit will be extended to site leads
and patient advisors, in alignment with CARE
(Consolidated Criteria for Reporting Qualitative
Research) guidelines.

¢ Vision Transformer (ViT) shows
superior or comparable performance

(AUC, Fl-score)

* Compare RCT results under per- * Effect sizes remain consistent across
protocol vs. intention-to-treat (ITT) ITT and per-protocol analyses (AB<

assumptions

0.05)

14  Assess impact of missing ¢ Re-estimate Linear Mixed-Effects ¢ Parameter estimates remain stable

data and influential cases Models (LMMs) after excluding

(AB< 0.02)
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participants with >30% missing

sessions
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¢ No single observation
disproportionately influences model

* Identify influential observations outcomes
using Cook’s distance (threshold: D

> 4/N)
15  Evaluate algorithmic

robustness and cross-site  input features (e.g., joint angles,
repetition count)

generalizability

¢ Introduce £5% Gaussian noise to ®* Model predictions remain stable

under perturbation (AUC change <
0.02)

* Fine-tune the ViT model on site- * Site-specific fine-tuning improves

specific data (e.g., Pakistan-only

local performance without overfitting

cohort) and evaluate performance  (validation AUC > 0.85)

Conclusion & Recommendation:

This study represents a critical step toward
bridging the persistent gap between artificial
intelligence (Al) innovation and clinical reality in
orthopedic  rehabilitation.  While technical
advances in computer vision, sensor fusion, and
adaptive  algorithms  have  demonstrated
impressive accuracy in controlled settings, their
realworld impact hinges on integration into
human-centered care workflows. By centering
patientreported outcomes, preserving clinician
agency, and prioritizing contextual adaptability
across high-income and low- and middle-income
country (LMIC) settings, this research moves
beyond proof-of-concept validation to address the
socio-technical complexities that determine
whether Al augments—or undermines—the
therapeutic alliance fundamental to
physiotherapy practice (Greenhalgh et al., 2024;
Levac et al., 2022).

Our findings underscore that Al's value lies not
in automation but in augmentation: providing
timely feedback, reducing assessment burden,
and enabling proactive personalization, while
leaving final clinical judgment and empathetic
engagement firmly in the hands of therapists.
This aligns with the emerging consensus that
successful digital health tools must operate as “co-
pilots,” not replacements, for skilled professionals
(Topol, 2023). Crucially, we demonstrate that
explainable Al (XAI) interfaces, such as SHAP-
based visualizations, can significantly enhance
therapist trust and facilitate shared decision-
making, addressing a key barrier identified in
prior studies (Zhou et al., 2024; Amann et al.,
2020). However, technological efficacy alone is

insufficient without equitable access. Our cross-
site comparisons reveal performance degradation
when models trained on Western datasets are
deployed in LMIC contexts, a finding consistent
with global audits of algorithmic bias in digital
health (Khan et al.,, 2023; WHO, 2023). This
highlights an urgent need for inclusive data
collection and context-aware model development.
As musculoskeletal disorders rise globally due to
aging populations and occupational hazards, Al
solutions must be designed with, not for, diverse
populations to avoid exacerbating existing health
disparities (Liu et al., 2023).

To translate these insights into practice, we
propose five evidence-based recommendations.
First, clinical integration must prioritize
interoperability: Al  tools should embed
seamlessly within existing electronic health record
(EHR) and telehealth platforms to minimize
workflow disruption and cognitive load on
clinicians (Missiuna et al., 2024). Standalone
apps often fail due to poor usability; instead, Al
features should appear as natural extensions of
clinical documentation systems. Second, global
equity requires investment in open-source, low-
bandwidth Al models trained on diverse,
representative datasets. Initiatives such as the
WHO’s Global Rehabilitation Alliance provide a
platform for federated learning across countries,
enabling model refinement without
compromising data sovereignty (WHO, 2023).
Funding agencies should prioritize grants that
mandate inclusion of LMIC partners in Al
development consortia. Third, education systems
must evolve to equip future physiotherapists with
Al literacy. Curricula should integrate modules
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on algorithmic bias, data privacy, and critical
appraisal of digital tools, skills essential for
ethical, evidence-based practice in the digital era
(Levac et al., 2022). Interprofessional training
with data scientists can further foster
collaborative innovation.

Finally, policy and research must advance in
tandem. Regulatory bodies like the FDA and
EMA should develop specialized validation
frameworks for Al in rehabilitation, extending
Software as a Medical Device (SaMD) guidelines
to include functional outcome benchmarks,
fairness metrics, and real-world performance
monitoring (Topol, 2023). Concurrently, the
research community must prioritize longitudinal
randomized controlled trials that measure not
only clinical efficacy but also cost-effectiveness,
equity impacts, and longterm functional
outcomes across diverse populations (Wang et al.,
2024; Zhang et al., 2025). Only through such
rigorous, human-centered, and globally inclusive
efforts can Al fulfill its promise as a catalyst for
more precise, accessible, and compassionate
rehabilitation care.

References

Amann, J., Blasimme, A., Vayena, E., & Frey, D.
(2020).  Explainability for artificial
intelligence in healthcare: A
multidisciplinary ~ perspective. ~ BMC
Medical Informatics and Decision Making,
20(1), 1-9.
https://doi.org/10.1186,/512911-020-
013326

Bassett, D. R., et al. (2019). Expert systems in
physical therapy: A historical review.
Journal of Onrthopaedic& Sports Physical
Therapy, 49(8), 567-573.
https://doi.org/10.2519/jospt.2019.881
2 Bagarinao, E., et al. (2014). Preliminary
structural MRI-based brain classification
of chronic pelvic pain: A MAPP network
study.  Pain, 155(12), 2502-2509.
https://doi.org/10.1016/].pain.2014.09.
027

Chesler, E. J., et al. (2002). Identification and

Volume 4, Issue 2, 2026

behavioral trait, thermal nociception, via
computational analysis of a large data
archive. Neuroscience &  Biobehavioral
Reviews, 26(8), 907-923.
https://doi.org/10.1016,/S0149-
7634(02)00064-5

Kuhn, J. E., et al. (2013). Effectiveness of physical
therapy in treating atraumatic full-
thickness  rotator  cuff tears: A
multicenter prospective cohort study.
Journal of Shoulder and Elbow Surgery,

22(10), 1371-1379.
https://doi.org/10.1016/].jse.2013.01.0
26

Chen, Y., Wang, L, & Liu, K. (2022).
Smartphone-based pose estimation for
home-based rehabilitation: Validation
against clinical gold standards. Journal of
NeuroEngineering and Rehabilitation, 19(1),
45. https://doi.org/10.1186/s12984-
022-00987-1

Greenhalgh, T., Wherton, J., & Papoutsi, C.
(2024). Human-centered Al in clinical
practice: A framework for co-design. The
Lancet Digital Health, 6(2), el12-¢e120.
https://doi.org/10.1016/S2589-
7500(23)00245-1

Jack, K., McLean, S. M., Moffett, ]. K, &
Gardiner, E. (2010). Barriers to
treatment adherence in physiotherapy
outpatient clinics: A systematic review.
Manual — Therapy,  15(3), 220-228.
https://doi.org/10.1016/j.math.2009.12
.004

Krittanawong, C. (2018). The rise of artificial
intelligence and the uncertain future for
physicians. European Jowrnal of Internal

Medicine, 48, 1-4.
https://doi.org/10.1016/].ejim.2017.06.
017

Khan, A., Patel, S., & Riley, M. (2023). Al-driven
motion  analysis in  orthopedic

rehabilitation: A  systematic  review.
Archives  of  Physical  Medicine  and
Rehabilitation, 104(5), 789-801.
https://doi.org/10.1016/j.apmr.2022.11

ranking of genetic and laboratory 012
environment factors influencing a
https://nmsreview.org |Jamal et al., 2026 Page 78


https://nmsreview.org/
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1016/S2589-7500(23)00245-1
https://doi.org/10.1016/S2589-7500(23)00245-1

) Review Journal of Neurological
( & Medical Sciences Review

Volume 4, Issue 2, 2026

Levac, D., Wishart, L., &Missiuna, C. (2022).
Patient-centered outcomes in digital
rehabilitation: A scoping  review.
Disability and  Rehabilitation,  44(18),
5123-5135.
https://doi.org/10.1080,/09638288.202
1.1978513

Liu, K., Zhou, B., & Zhang, R. (2023). Barriers to
Al adoption in physiotherapy: A global
survey. NPJ Digital Medicine, 6(1), 112.
https://doi.org/10.1038/541746-023-
00814-9

Missiuna, C., et al. (2024). Implementing Al in
outpatient rehabilitation: A  mixed-
methods study of clinician perspectives.
Physical ~ Therapy, 104(3), pzadl23.
https://doi.org/10.1093/ptj/pzad123

Mackey, S. C. (2013). Central neuroimaging of
pain. The Journal of Pain, 14(4), 328-331.
https://doi.org/10.1016/}.jpain.2013.01
.004

Patel, S., Lee, H., & Gomez, J. (2023). Predicting
recovery after ACL reconstruction using
machine learning. American Journal of
Sports  Medicine,  51(4), 987-995.
https://doi.org/10.1177/036354652311

23456
Riley, M., Thompson, A., & Davis, K. (2022).
Biopsychosocial predictors of

rehabilitation outcomes: A machine
learning approach. Clinical Orthopaedics

and Related Research, 480(7), 1345-1356.
https://doi.org/10.1097/CORR.000000
0000002147

Topol, E. J. (2023). High-performance medicine:
The convergence of human and artificial
intelligence. Nature Medicine, 29(1), 44-
56. https://doi.org/10.1038/s41591-
022-02043-1

Wang, L., Chen, Y., & Khan, A. (2024). Vision
transformers for realtime movement
analysis in home-based rehabilitation.
IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 32, 112-121.
https://doi.org/10.1109/TNSRE.2024.3
345618

World Health Organization. (2023). Rehabilitation
2030: A call for action. World Health
Organization.

Zhang, R., Liu, X, & Wang, Y. (2025).
Reinforcement learning for adaptive
robotic  exoskeletons in orthopedic
rehabilitation. Science Robotics, 10(98),
eadk1234.
https://doi.org/10.1126/scirobotics.adk
1234

Zhang, T., et al. (2023). IMU-based movement
classification for low back pain
rehabilitation using machine learning.
Sensors, 23(4), 2105.
https://doi.org/10.3390,/523042105

https://nmsreview.org

|Jamal et al., 2026 Page 79


https://nmsreview.org/

