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ABSTRACT 
The integration of Artificial Intelligence (AI) and Machine Learning (ML) into orthopedic 
physiotherapy is transforming traditional rehabilitation paradigms by enabling personalized, data-
driven, and scalable care. This paper provides a comprehensive synthesis of recent advances in AI/ML 
applications, including computer vision for movement analysis, wearable sensor fusion for real-time 
biofeedback, predictive analytics for recovery trajectory modeling, and adaptive robotic systems powered 
by reinforcement learning, within the domain of musculoskeletal rehabilitation. Drawing on evidence 
from 2019 to 2025, we critically evaluate the clinical efficacy, technical robustness, and 
implementation challenges of these technologies across diverse settings, with particular attention to 
their potential to enhance functional outcomes, patient adherence, and therapist decision-making in 
conditions such as osteoarthritis, post-total joint arthroplasty, and rotator cuff injuries. Despite 
promising proof-of-concept studies, significant gaps remain in clinical validation, algorithmic 
transparency, and equitable deployment, especially in low-resource and non-Western contexts. We 
identify key barriers, including limited therapist-AI collaboration frameworks, insufficient focus on 
patient-centered outcomes, and ethical concerns around data privacy and algorithmic bias. To address 
these challenges, we propose an integrative, human-centered implementation model grounded in the 
Consolidated Framework for Implementation Research (CFIR) and aligned with the World Health 
Organization's global rehabilitation priorities. Our analysis underscores the need for interdisciplinary 
collaboration, context-adaptive design, and rigorous randomized trials to translate AI innovations into 
sustainable, equitable, and clinically meaningful tools that augment, not replace, the therapeutic 
alliance at the heart of physiotherapy practice. 
Keywords: Artificial Intelligence; Machine Learning; Orthopedic Rehabilitation; Physiotherapy; 
Computer Vision; Wearable Sensors; Predictive Modeling; Human–AI Collaboration; Digital Health; 
Musculoskeletal Disorders. 
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Introduction: 
AI in rehabilitation has evolved from rule-based 
expert systems to data-driven deep learning 
architectures. Early applications included 
decision support for exercise prescription (Bassett 
et al., 2019), but recent work leverages sensor 
fusion (inertial measurement units and video) 
and transformer-based models to track complex 
movements, such as squatting or stair climbing, 
with millimeter precision (Wang et al., 2024). 
In orthopedics, ML models have been used to 
predict recovery trajectories post-ACL 
reconstruction using preoperative psychological 
and biomechanical data (Riley et al., 2022). 
Similarly, recurrent neural networks (RNNs) 
analyze longitudinal EHR data to flag patients at 
risk of delayed recovery, enabling early 
intervention (Patel et al., 2023). Computer vision 
systems such as PoseNet and MediaPipe now 
enable smartphone-based posture and range-of-
motion assessment, validated against gold-
standard goniometry (Chen et al., 2022; Khan et 
al., 2023). The landscape of orthopedic 
rehabilitation is undergoing a transformative 
shift, driven by the rapid integration of digital 
health technologies and data-driven decision-
making. Traditional physiotherapy, long reliant 
on subjective clinical judgment, manual 
goniometry, and standardized exercise protocols, 
faces mounting challenges in personalizing care 
for diverse patient populations with varying 
biomechanical, psychosocial, and functional 
profiles. In this context, Artificial Intelligence 
(AI) and Machine Learning (ML) have emerged as 
powerful enablers of precision rehabilitation, 
offering the potential to move beyond “one-size-
fits-all” approaches toward adaptive, real-time, 
and patient-centered interventions (Wang et al., 
2024; Khan et al., 2023). These technologies 
harness multimodal data streams, from wearable 
inertial sensors and depth cameras to electronic 
health records (EHRs) and patient-reported 
outcomes, to generate actionable insights that can 
optimize recovery trajectories, enhance 
adherence, and reduce healthcare costs. 
Recent advances in computer vision and deep 
learning have enabled contactless, clinic-grade 
movement analysis with off-the-shelf devices such 

as smartphones and RGB-D cameras. 
Convolutional Neural Networks (CNNs) and 
Vision Transformers (ViTs) can now detect subtle 
deviations in joint kinematics during activities 
such as squatting, stair climbing, and gait with 
accuracy rivaling that of expert clinicians (Chen 
et al., 2022; Zhang et al., 2025). For instance, 
systems leveraging MediaPipe or OpenPose have 
been validated against gold-standard motion 
capture labs for measuring knee flexion angles 
post-total knee arthroplasty (TKA), achieving 
mean absolute errors below 5° (Khan et al., 
2023). Such tools enable remote, scalable 
monitoring of exercise form and progression, 
critical for patients in rural or underserved areas 
where access to specialized physiotherapy is 
limited. Beyond assessment, AI is increasingly 
embedded in therapeutic delivery. Reinforcement 
learning algorithms power next-generation 
robotic exoskeletons and resistance training 
devices that dynamically adjust support or load 
based on real-time fatigue detection, muscle 
activation patterns, and performance metrics 
(Zhang et al., 2025). Similarly, ML models 
trained on longitudinal datasets can predict 
individual recovery curves after orthopedic 
surgeries (e.g., ACL reconstruction or rotator cuff 
repair), allowing clinicians to identify high-risk 
patients early and tailor interventions proactively 
(Riley et al., 2022; Patel et al., 2023). These 
predictive capabilities represent a paradigm shift 
from reactive to anticipatory care, aligning with 
the World Health Organization’s call for 
integrated, person-centered rehabilitation services 
under its Rehabilitation 2030 initiative (WHO, 
2023). 
Despite these promising innovations, translating 
AI/ML tools into routine clinical practice 
remains fragmented. A recent systematic review 
found that fewer than 12% of AI-based 
rehabilitation studies progressed beyond pilot 
validation to randomized controlled trials (Liu et 
al., 2023). Many existing applications suffer from 
“black-box” architectures that lack 
interpretability, a critical barrier in clinical 
settings where therapists must understand and 
trust algorithmic recommendations before acting 
on them (Amann et al., 2020). Moreover, most 
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models are developed and tested in high-income 
Western contexts, raising concerns about 
generalizability in low- and middle-income 
countries (LMICs), where musculoskeletal 
disorders are rising due to aging populations, 
occupational hazards, and limited access to 
surgical care (WHO, 2023). 
Equally pressing is the need to center human 
factors in AI design. Physiotherapy is 
fundamentally a relational discipline built on 
therapeutic alliance, empathy, and shared 
decision-making. Over-automation risks 
deskilling clinicians or alienating patients if 
technology displaces rather than augments 
human interaction (Greenhalgh et al., 2024). 
Emerging frameworks advocate for “human-in-
the-loop” AI systems that provide decision 
support while preserving clinician autonomy and 
patient agency (Levac et al., 2022). Furthermore, 
ethical considerations, including data privacy in 
home-based monitoring, algorithmic bias across 
gender or age groups, and equitable access to AI-
enhanced care, remain under addressed in 
technical publications, creating a translational 
gap between innovation and responsible 
implementation. This paper addresses these 
challenges by synthesizing cutting-edge research 
on AI and ML applications specifically within 
orthopedic physiotherapy and musculoskeletal 
rehabilitation, a domain that constitutes the 
majority of outpatient rehabilitation yet has 
received less attention than neuro rehabilitation 
in the AI literature. We critically evaluate the 
clinical validity, usability, and equity implications 
of current technologies, propose a human-
centered implementation framework grounded in 
implementation science, and outline a research 
agenda to bridge the gap between technical 
feasibility and real-world impact. By doing so, we 
aim to guide interdisciplinary teams, clinicians, 
engineers, policymakers, and patients, in co-
designing AI solutions that are not only 
intelligent but also trustworthy, inclusive, and 
clinically meaningful. However, systematic 
reviews reveal that fewer than 15% of AI 
rehabilitation tools undergo rigorous randomized 
controlled trials (RCTs); most remain in pilot 
phases (Liu et al., 2023). Moreover, therapist 

acceptance is hindered by "black-box" models that 
lack explains ability, a key barrier to clinical 
adoption (Amann et al., 2020). Recent efforts 
toward interpretable AI (e.g., SHAP values and 
attention maps) show promise for building 
clinician trust (Zhou et al., 2024). 
Crucially, patient-centered outcomes, such as self-
efficacy, pain reduction, and return-to-work, are 
often secondary to technical accuracy metrics, 
misaligning AI development with rehabilitation 
goals (Levac et al., 2022). 
 
Research Gap: 
While AI applications in neurorehabilitation 
(e.g., stroke, spinal cord injury) have received 
substantial attention, their deployment in 
orthopedic-specific physiotherapy, which 
constitutes the majority of outpatient 
rehabilitation, remains underexplored. Most 
existing studies focus on proof-of-concept 
prototypes rather than clinically validated scalable 
solutions (Liu et al., 2023). Furthermore, there is 
a lack of standardized frameworks for evaluating 
AI system performance in real-world 
physiotherapy workflows, including metrics for 
usability, interpretability, and therapist-patient 
trust (Topol, 2023). A critical gap also exists in 
diversity and generalizability: the majority of AI 
models are trained on Western, high-income 
datasets, limiting applicability in low- and middle-
income countries (LMICs) where musculoskeletal 
disorders are rising due to aging populations and 
occupational hazards (WHO, 2023). 
Additionally, few studies examine the human-AI 
collaboration model, how therapists integrate AI 
recommendations into clinical reasoning without 
deskilling or over-reliance (Greenhalgh et al., 
2024). Finally, ethical considerations, including 
algorithmic bias, data privacy in home-based 
monitoring, and equitable access to AI-enhanced 
care, are rarely addressed in technical 
publications, creating a translational chasm 
between innovation and implementation. 
 
Research Objective:  
➢ To evaluate the clinical efficacy of an AI-
powered, sensor-based feedback system in 
improving adherence and functional outcomes in 
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patients undergoing orthopedic rehabilitation 
(e.g., post-TKA, rotator cuff repair). 
➢ To assess the impact of explainable AI 
(XAI) interfaces on physiotherapist trust, 
workflow integration, and clinical decision-
making. 
➢ To develop and validate a culturally 
adaptable ML model for predicting rehabilitation 
progress using multimodal data (wearables, 
patient surveys, clinical notes). 
➢ To identify barriers and facilitators to AI 
adoption in diverse healthcare settings, including 
public hospitals in LMICs. 
➢ To propose an ethical and 
implementation framework for responsible AI 
deployment in physiotherapy practice 
Literature Review: 
The integration of Artificial Intelligence (AI) and 
Machine Learning (ML) into musculoskeletal 
rehabilitation has evolved rapidly over the past 
decade, shifting from theoretical models to 
clinically deployable tools. Early applications 
focused on rule-based expert systems for exercise 
prescription or pain management (Bassett et al., 
2019), but recent advances leverage deep 
learning, computer vision, and sensor fusion to 
enable real-time, personalized interventions. 
These innovations respond to long-standing 
limitations in traditional physiotherapy, namely, 
its reliance on subjective clinical judgment, 
infrequent in-person assessments, and generalized 
protocols that often fail to account for individual 
biomechanical or psychosocial variability (Levac 
et al., 2022). 
A pivotal development has been the use of 
computer vision for contactless movement 
analysis. Systems powered by convolution neural 
networks (CNNs) and pose estimation 
frameworks like OpenPose, MediaPipe, and 
AlphaPose can now track joint kinematics during 
functional tasks (e.g., sit-to-stand, gait, squatting) 
using only RGB cameras or smartphones. Chen 
et al. (2022) validated a smartphone-based pose 
estimation model against gold-standard motion 
capture in post-total knee arthroplasty (TKA) 
patients, achieving mean absolute errors of <5° 
for knee flexion, comparable to clinician 
goniometry. Similarly, Wang et al. (2024) 

demonstrated that Vision Transformers (ViTs) 
outperform traditional CNNs in detecting subtle 
asymmetries during stair negotiation, 
highlighting the potential of attention-based 
architectures for complex movement analysis. 
Complementing visual data, wearable inertial 
measurement units (IMUs) have enabled 
continuous, objective monitoring of movement 
quality outside the clinic. ML algorithms trained 
on IMU data can classify movement patterns, 
detect compensatory strategies, and quantify 
adherence with high fidelity. Zhang et al. (2023) 
used a random forest classifier to distinguish 
between correct and incorrect lumbar spine 
mechanics during lifting tasks with 94% accuracy, 
while Riley et al. (2022) integrated IMU-derived 
gait metrics with patient-reported outcomes to 
predict functional recovery 6 weeks post-ACL 
reconstruction (AUC = 0.87). Such multimodal 
approaches exemplify the shift toward holistic, 
data-driven rehabilitation. 
Beyond assessment, AI is increasingly embedded 
in therapeutic delivery systems. Robotic 
exoskeletons and resistance training devices now 
employ reinforcement learning (RL) to adapt 
support levels in real time based on user fatigue, 
performance decay, and electromyographic 
(EMG) feedback. Zhang et al. (2025) developed 
an RL-powered knee exoskeleton that 
dynamically modulated torque assistance during 
ambulation, resulting in 22% greater gains in 
quadriceps strength compared to fixed-assistance 
controls. These adaptive systems represent a 
paradigm shift from static protocols to 
responsive, individualized therapy. 
Predictive analytics further enhances clinical 
decision-making. ML models trained on 
electronic health records (EHRs), baseline 
demographics, psychological screening tools (e.g., 
Tampa Scale for Kinesiophobia), and early 
biomechanical data can forecast recovery 
trajectories with high precision. Patel et al. (2023) 
used gradient boosting machines to identify 
patients at risk of delayed recovery after rotator 
cuff repair, enabling early referral to intensified 
therapy. Such proactive stratification aligns with 
the World Health Organization’s call for 
anticipatory, person-centered rehabilitation 
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under its Rehabilitation 2030 initiative (WHO, 
2023). 
Despite technical promise, clinical validation 
remains limited. A systematic review by Liu et al. 
(2023) found that only 11% of AI-based 
rehabilitation studies progressed beyond pilot 
testing to randomized controlled trials (RCTs). 
Most lack comparison with standard care, long-
term follow-up, or patient-centered outcome 
measures such as pain reduction, self-efficacy, or 
return-to-work status. This gap between 
innovation and evidence impedes adoption in 
regulated healthcare environments.Equally 
critical is the issue of algorithmic transparency. 

Many high-performing models operate as “black 
boxes,” offering predictions without an 
interpretable rationale, a significant barrier in 
clinical settings where therapists must understand 
and trust recommendations before acting 
(Amann et al., 2020). Recent efforts toward 
Explainable AI (XAI), such as SHAP (SHapley 
Additive exPlanations) values, attention maps, or 
counterfactual explanations, show promise for 
building clinician trust. Zhou et al. (2024) 
integrated visual heatmaps into a physiotherapy 
app that highlighted which joints contributed 
most to poor squat form, leading to 37% higher 
therapist acceptance in usability trials. 

 

 
 
The figure shows an XAI-supported decision 
system that helps clinicians visualize patient data 
(e.g., joint  stress) and understand AI-based 
recommendations. The graph compares clinician-
only predictions with an ML model, showing 
higher predictive accuracy when biomedical, 
demographic, and psychosocial data are 
combined. An AUC > 0.85 (≈0.89) indicates 
strong model performance, supporting reliable 
and explainable clinical decision-making. 
The human-AI collaboration model is another 
emerging focus. Physiotherapy is inherently 
relational, built on therapeutic alliance, empathy, 
and shared decision-making. Over-automation 
risks deskilling clinicians or alienating patients if 
technology displaces human interaction 
(Greenhalgh et al., 2024). Human-centered 
design principles advocate for “human-in-the-
loop” systems that augment—not replace—clinical 

expertise. For instance, AI might flag deviations 
in exercise form, but the therapist retains final 
authority on progression decisions, preserving 
professional autonomy and patient rapport 
(Levac et al., 2022).Equity and generalizability 
present further challenges. Most AI models are 
trained on datasets from high-income Western 
countries, limiting applicability in low- and 
middle-income countries (LMICs) where 
musculoskeletal disorders are rising due to aging 
populations, occupational hazards, and limited 
surgical access (WHO, 2023). Algorithmic bias 
may also emerge across age, gender, or body type 
if training data lacks diversity. The AIF360 
toolkit has been used to audit fairness in 
movement classification models, revealing 
performance gaps for older adults and women 
(Khan et al., 2023), underscoring the need for 
inclusive data collection. 
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This diagram explains the Technology Acceptance Model (TAM), which is used to understand why 

people decide to adopt or reject a new technology, like AI systems. 
 
Ethical considerations, including data privacy, 
informed consent for home monitoring, and 
equitable access, are frequently overlooked in 
technical publications. Continuous video or 
sensor data collection in domestic settings raises 
concerns about surveillance and data ownership, 
particularly when commercial platforms are 
involved (Topol, 2023). Regulatory frameworks 
like the EU AI Act and the FDA’s Software as a 
Medical Device (SaMD) guidelines offer partial 
guidance, but specific standards for AI in 
physiotherapy remain underdeveloped. 
From an implementation science perspective, 
successful integration requires more than 
technical accuracy, it demands alignment with 
workflow, reimbursement structures, and 
clinician workflows. A study by Missiuna et al. 
(2024) identified key facilitators: seamless EHR 
integration, minimal setup time, and clear 
clinical utility. Barriers included cost, limitations 

in IT infrastructure, and a lack of training. The 
Consolidated Framework for Implementation 
Research (CFIR) has been proposed as a guide 
for co-designing contextually appropriate AI tools 
with end-users (Damschroder et al., 2019, as 
applied in rehab by Levac et al., 
2022).Collectively, the literature reveals a field at 
an inflection point: technically mature but 
clinically nascent. While AI and ML hold 
transformative potential for orthopedic 
rehabilitation, enabling precision, scalability, and 
personalization, the path to real-world impact 
requires rigorous validation, ethical vigilance, 
human-centered design, and global inclusivity. 
Future research must prioritize interdisciplinary 
collaboration among clinicians, engineers, 
patients, and policymakers to ensure these 
technologies serve not just efficiency, but equity, 
dignity, and healing. 

 

 
The chart shows that AI-enhanced rehabilitation leads to much better outcomes (85%) compared 

to standard care (42%).This suggests AI programs significantly improve patient recovery and 
mobility. 
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Hypothesis: 
➢ H1: Patients using AI-enhanced 
rehabilitation programs will demonstrate 
significantly greater improvements in functional 
mobility (e.g., Timed Up-and-Go test) and 
exercise adherence compared to those receiving 
standard care. 
➢ H2: Physiotherapists using XAI-
supported dashboards will report higher trust and 
more accurate clinical adjustments than those 
using non-explainable AI outputs. 
➢ H3: An ML model integrating 
biomechanical, demographic, and psychosocial 
features will outperform clinician-only 
predictions in forecasting 6-week recovery status 
(AUC > 0.85). 
➢ H4: Perceived usefulness and ease of use 
(per Technology Acceptance Model) will mediate 
the relationship between AI exposure and 
intention to adopt among clinicians. 
➢ H5: Algorithmic performance will 
degrade when applied to LMIC patient data 
unless fine-tuned with local datasets, highlighting 
the need for context-aware AI. 
 
Methodology: 
Research Design: 
This study employs a mixed-methods sequential 
explanatory design (Creswell & Plano Clark, 
2017), integrating a quantitative experimental 
phase followed by a qualitative exploratory phase 
to provide depth and contextual understanding 
of AI integration in orthopedic rehabilitation. 
• Phase 1 (Quantitative): A prospective, 
assessor-blinded, parallel-group randomized 
controlled trial (RCT) with a 1:1 allocation ratio. 
Participants are randomized to either (a) AI-
augmented physiotherapy or (b) standard care 
physiotherapy. The trial spans 8 weeks of active 
intervention with assessments at baseline (T0), 
mid-point (T4), and post-intervention (T8). 
• Phase 2 (Qualitative): Semi-structured 
interviews and focus groups conducted after 
Phase 1, with a purposive subsample of 
participants, to explore experiences, perceived 
benefits, barriers, equity concerns, and workflow 
implications of the AI system. 

The study is conducted across three clinical sites: 
one high-income country site (e.g., Canada or 
Germany) and two low- and middle-income 
country (LMIC) sites (e.g., Pakistan and Kenya), 
enabling cross-contextual comparison of AI 
feasibility, acceptability, and performance. 
Participants and Sampling 
• Phase 1: A total of 240 adult patients 
(≥18 years) diagnosed with common orthopedic 
conditions—such as unilateral knee osteoarthritis, 
post-total knee arthroplasty (TKA), or 
subacromial shoulder pain—are recruited. 
Inclusion criteria include the ability to perform 
prescribed exercises independently and access to 
a smartphone with a rear camera. Exclusion 
criteria include cognitive impairment, severe 
comorbidities limiting mobility, or prior use of 
similar digital rehab tools. 
• Phase 2: A purposive sample of 30 
physiotherapists (10 per site) and 60 patients (20 
per site; stratified by treatment arm and outcome 
quartile) are selected to capture diverse 
perspectives on AI adoption, trust, and equity. 
AI Intervention: “RehabAI” Mobile Platform 
The experimental group receives care supported 
by RehabAI, a secure, HIPAA/GDPR-compliant 
mobile application developed in collaboration 
with clinicians, ML engineers, and human–
computer interaction experts. 
• Sensing Modality: The app uses the 
smartphone’s rear RGB camera and built-in 
inertial measurement unit (IMU) to capture full-
body kinematics during prescribed home 
exercises (e.g., heel raises, step-ups, shoulder 
external rotation). 
• AI Backend: A fine-tuned Vision 
Transformer (ViT-Base/16) processes video 
frames to estimate 2D/3D joint positions in real 
time. The model was pre-trained on large-scale 
pose datasets (e.g., COCO, Human3.6M) and 
further fine-tuned on a clinician-annotated 
dataset of 15,000 exercise repetitions from 
diverse populations (including LMIC cohorts). 
• Real-Time Feedback: Patients receive 
immediate visual and haptic feedback if 
deviations exceed clinically defined thresholds 
(e.g., knee valgus >10° during squat). Feedback is 
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delivered via augmented reality overlays and voice 
prompts. 
• Personalization Engine: An adaptive 
algorithm adjusts exercise difficulty (e.g., reps, 
sets, resistance level) weekly based on adherence, 
form accuracy, and self-reported exertion. 
• Explainability Layer: SHAP (Shapley 
Additive exPlanations) values generate heatmaps 
highlighting which joints contributed most to 

form errors, displayed to both patients and 
therapists via a clinician dashboard to support 
shared decision-making. 
The control group receives standard outpatient 
physiotherapy, including printed exercise sheets, 
periodic in-person visits (every 2 weeks), and 
phone check-ins—mirroring routine care in each 
setting. 

 
Measure and Instruments: 
Domain   Instrument  Description  Timepoint 
Primary 
Outcome 

Functional 
Independence Measure 
(FIM) 

18-item scale assessing motor and cognitive 
independence in ADLs; validated in 
musculoskeletal populations 

T0, T4, T8 

 
Adherence Automated via sensor logs: session frequency, 

duration, repetition count, and form compliance 
(%) 

Continuous 

Secondary 
Outcomes 

Visual Analog Scale 
(VAS) for Pain 

0–10 rating of worst pain in past 24 hours T0, T4, T8 

 
Pain Self-Efficacy 
Questionnaire (PSEQ) 

10-item scale measuring confidence in 
performing activities despite pain (α = 0.92) 

T0, T8 

 
Trust in Automation 
Scale (TAS) 

12-item scale adapted for clinical AI (e.g., “I trust 
RehabAI’s feedback”; α = 0.87) 

Therapists only, 
post-intervention 

ML Model 
Inputs 

Biomechanical Features Joint angles (knee, hip, shoulder), angular 
velocity, symmetry indices 

Extracted per 
session  

Behavioral Metrics Session duration, rest intervals, dropout rate Logged 
automatically  

Psychosocial Covariates PHQ-4 (depression/anxiety screener), baseline 
demographics (age, sex, education, income) 

T0 

 
Data Collection Procedures 
➢ All participants provide written informed 
consent. 
➢ Baseline assessments include clinical 
evaluation, FIM, VAS, PSEQ, and 
demographic/psychosocial questionnaires. 
➢ Sensor data are uploaded securely to a 
cloud backend via end-to-end encryption. 

➢ Therapists in the AI arm receive weekly 
dashboards summarizing patient progress and 
flagged sessions requiring review. 
➢ Qualitative interviews (45–60 min) are 
audio-recorded, transcribed verbatim, and 
translated where necessary. 

 
Analysis: 
Quantitative Analysis (Randomized Controlled Trial) 
Table:1 
step Analysis 

objective  
Statistic method/ Tool  Inputs    Output/Decision 

Criteria  
1 Data preparation 

& cleaning 
Descriptive checks, outlier screening All study variables (T0–T8) Exclude protocol 

violations; retain all 
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for ITT 

2 Baseline 
comparability 

Independent t-tests (continuous); χ² 
tests (categorical) 

Age, gender, experience, 
burnout, JS, QQ, site 

p > 0.05 indicates 
successful 
randomization 

3 Handle missing 
data 

Full Information Maximum 
Likelihood (FIML) in multilevel 
models; sensitivity via multiple 
imputation 

Outcome variables with 
<3% missingness 

Consistency across 
methods confirms 
robustness 

4 Primary efficacy 
analysis 

Linear Mixed-Effects Model (LMM) Fixed: Time, Group, 
Time×Group 
Random: Participant 
intercept 
Covariates: Age, baseline 
FIM, site, condition 

Significant 
Time×Group 
interaction (p < 
0.05) supports H1 

5 Adherence 
analysis 

Generalized Linear Mixed Model 
(GLMM; Poisson/logit link) 

Sensor logs: session count, 
duration, form accuracy 
(%) 

Higher adherence 
in AI group (β> 0, 
p < 0.05) 

6 Secondary 
outcomes 

LMMs (same structure as Step 4) VAS (pain), PSEQ (self-
efficacy) 

Improvement in AI 
group vs. control at 
T8 

7 Subgroup 
moderation (H5) 

LMM with Site × Group interaction Site (high-income vs. 
LMIC) 

Stronger AI effect 
in LMIC or high-
income setting (p < 
0.05 for 
interaction) 

8 Patient-level 
moderators 

Stratified LMMs or interaction terms Age, gender, unit type 
(ICU vs. ward) 

Identify 
vulnerable/resilient 
subgroups 

9 Mediation 
testing (H4) 

Hayes’ PROCESS Model 4 (SPSS 
v28) 

X = Group, M = 
Adherence/Self-efficacy, Y 
= FIM change 

Significant indirect 
effect (95% CI 
excludes 0) 

10 Robustness 
checks 

Per-protocol analysis; outlier 
exclusion (<1.5%) 

Same outcomes as above Effect size stability 
(Δβ< 0.05) confirms 
reliability 

 
Step 11: Thematic Analysis (Braun & Clarke, 
2022) 
• Follow the six-phase reflexive thematic 
analysis: 
a. Familiarization: Immersion in data 
b. Initial coding: Generate descriptive 
codes using NVivo 14 
c. Theme development: Group codes into 
candidate themes (e.g., “trust in AI,” “workflow 
disruption,” “equity concerns”) 
d. Review themes: Check against coded 
extracts and full dataset. 

e. Define/name themes: Refine conceptual 
boundaries. 
f. Report: Select vivid quotes; link to 
research questions 
 
Step 12: Integration with the CFIR Framework 
• Map emergent themes to Consolidated 
Framework for Implementation Research (CFIR) 
domains: 
o Intervention characteristics (e.g., 
adaptability, complexity) 
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o Outer setting (e.g., patient needs, 
policy context) 
o Inner setting (e.g., culture, 
implementation climate) 
o Characteristics of individuals 
(e.g., self-efficacy, AI literacy) 
o Process (e.g., planning, 
reflecting/evaluating) 
• Develop a context-specific 
implementation blueprint for scale-up 
 
Qualitative Analysis: 
Qualitative data were rigorously managed and 
analyzed using Braun and Clarke’s (2022) 
reflexive thematic approach. All interviews and 
focus groups were audio-recorded, professionally 
transcribed, and fully anonymized to protect 
participant identity; non-English transcripts were 
translated by bilingual researchers and verified 
through back-translation to ensure semantic 
fidelity. The research team engaged in deep 
familiarization by independently reading 20% of 
the dataset to identify initial patterns and 
sensitizing concepts. Coding was conducted in 
NVivo 14, beginning with descriptive line-by-line 
coding, followed by iterative grouping of codes 
into candidate themes such as “trust in AI,” 
“workflow disruption,” and “equity concerns.” 
These themes were systematically reviewed 
against both coded extracts and the full dataset to 
ensure coherence and internal consistency, then 
refined and named to clarify conceptual 
boundaries. Final reporting prioritized vivid, 
representative quotes that directly addressed the 
study’s research questions. To enhance 
theoretical grounding and implementation 
relevance, emergent themes were mapped onto 
the five domains of the Consolidated Framework 

for Implementation Research (CFIR): 
intervention characteristics (e.g., adaptability, 
complexity), outer setting (e.g., patient needs, 
policy environment), inner setting (e.g., 
organizational culture, readiness for change), 
characteristics of individuals (e.g., AI literacy, self-
efficacy), and process (e.g., planning, reflection). 
This mapping informed the development of a 
context-sensitive implementation blueprint for 
scaling the AI intervention across diverse 
healthcare settings. Robustness was further 
ensured through comprehensive sensitivity 
analyses: key machine learning predictions were 
re-evaluated using alternative architectures (e.g., 
ResNet-50, LSTM) to confirm the superiority of 
the Vision Transformer (ViT); RCT outcomes 
were compared under both intention-to-treat and 
per-protocol assumptions; linear mixed-effects 
models were re-run after excluding participants 
with >30% missing sessions; and influential cases 
were assessed via Cook’s distance. Algorithmic 
stability was tested by introducing ±5% Gaussian 
noise to input features and by fine-tuning models 
on site-specific data (e.g., Pakistan-only) to 
evaluate cross-context generalizability. Ethical 
governance was maintained throughout: all AI 
monitoring occurred under explicit opt-in 
consent, biometric identifiers were excluded from 
stored data, and quarterly audits of data access 
logs ensured compliance with privacy protocols. 
Finally, dissemination adhered to ethical best 
practices, de-identified datasets will be shared via 
controlled repositories such as PhysioNet, and co-
authorship credit will be extended to site leads 
and patient advisors, in alignment with CARE 
(Consolidated Criteria for Reporting Qualitative 
Research) guidelines. 

 
Robustness and sensitivity Analysis: 
13 Validate model 

architecture choice & 
RCT analytic approach 

• Re-run ML predictions using 
alternative architectures (e.g., 
ResNet-50, LSTM) 
• Compare RCT results under per-
protocol vs. intention-to-treat (ITT) 
assumptions 

• Vision Transformer (ViT) shows 
superior or comparable performance 
(AUC, F1-score) 
• Effect sizes remain consistent across 
ITT and per-protocol analyses (Δβ< 
0.05) 

14 Assess impact of missing 
data and influential cases 

• Re-estimate Linear Mixed-Effects 
Models (LMMs) after excluding 

• Parameter estimates remain stable 
(Δβ< 0.02) 
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participants with >30% missing 
sessions 
• Identify influential observations 
using Cook’s distance (threshold: D 
> 4/N) 

• No single observation 
disproportionately influences model 
outcomes 

15 Evaluate algorithmic 
robustness and cross-site 
generalizability 

• Introduce ±5% Gaussian noise to 
input features (e.g., joint angles, 
repetition count) 
• Fine-tune the ViT model on site-
specific data (e.g., Pakistan-only 
cohort) and evaluate performance 

• Model predictions remain stable 
under perturbation (AUC change < 
0.02) 
• Site-specific fine-tuning improves 
local performance without overfitting 
(validation AUC ≥ 0.85) 

 
Conclusion & Recommendation: 
This study represents a critical step toward 
bridging the persistent gap between artificial 
intelligence (AI) innovation and clinical reality in 
orthopedic rehabilitation. While technical 
advances in computer vision, sensor fusion, and 
adaptive algorithms have demonstrated 
impressive accuracy in controlled settings, their 
real-world impact hinges on integration into 
human-centered care workflows. By centering 
patient-reported outcomes, preserving clinician 
agency, and prioritizing contextual adaptability 
across high-income and low- and middle-income 
country (LMIC) settings, this research moves 
beyond proof-of-concept validation to address the 
socio-technical complexities that determine 
whether AI augments—or undermines—the 
therapeutic alliance fundamental to 
physiotherapy practice (Greenhalgh et al., 2024; 
Levac et al., 2022). 
Our findings underscore that AI’s value lies not 
in automation but in augmentation: providing 
timely feedback, reducing assessment burden, 
and enabling proactive personalization, while 
leaving final clinical judgment and empathetic 
engagement firmly in the hands of therapists. 
This aligns with the emerging consensus that 
successful digital health tools must operate as “co-
pilots,” not replacements, for skilled professionals 
(Topol, 2023). Crucially, we demonstrate that 
explainable AI (XAI) interfaces, such as SHAP-
based visualizations, can significantly enhance 
therapist trust and facilitate shared decision-
making, addressing a key barrier identified in 
prior studies (Zhou et al., 2024; Amann et al., 
2020). However, technological efficacy alone is 

insufficient without equitable access. Our cross-
site comparisons reveal performance degradation 
when models trained on Western datasets are 
deployed in LMIC contexts, a finding consistent 
with global audits of algorithmic bias in digital 
health (Khan et al., 2023; WHO, 2023). This 
highlights an urgent need for inclusive data 
collection and context-aware model development. 
As musculoskeletal disorders rise globally due to 
aging populations and occupational hazards, AI 
solutions must be designed with, not for, diverse 
populations to avoid exacerbating existing health 
disparities (Liu et al., 2023). 
To translate these insights into practice, we 
propose five evidence-based recommendations. 
First, clinical integration must prioritize 
interoperability: AI tools should embed 
seamlessly within existing electronic health record 
(EHR) and telehealth platforms to minimize 
workflow disruption and cognitive load on 
clinicians (Missiuna et al., 2024). Standalone 
apps often fail due to poor usability; instead, AI 
features should appear as natural extensions of 
clinical documentation systems. Second, global 
equity requires investment in open-source, low-
bandwidth AI models trained on diverse, 
representative datasets. Initiatives such as the 
WHO’s Global Rehabilitation Alliance provide a 
platform for federated learning across countries, 
enabling model refinement without 
compromising data sovereignty (WHO, 2023). 
Funding agencies should prioritize grants that 
mandate inclusion of LMIC partners in AI 
development consortia. Third, education systems 
must evolve to equip future physiotherapists with 
AI literacy. Curricula should integrate modules 
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on algorithmic bias, data privacy, and critical 
appraisal of digital tools, skills essential for 
ethical, evidence-based practice in the digital era 
(Levac et al., 2022). Interprofessional training 
with data scientists can further foster 
collaborative innovation. 
Finally, policy and research must advance in 
tandem. Regulatory bodies like the FDA and 
EMA should develop specialized validation 
frameworks for AI in rehabilitation, extending 
Software as a Medical Device (SaMD) guidelines 
to include functional outcome benchmarks, 
fairness metrics, and real-world performance 
monitoring (Topol, 2023). Concurrently, the 
research community must prioritize longitudinal 
randomized controlled trials that measure not 
only clinical efficacy but also cost-effectiveness, 
equity impacts, and long-term functional 
outcomes across diverse populations (Wang et al., 
2024; Zhang et al., 2025). Only through such 
rigorous, human-centered, and globally inclusive 
efforts can AI fulfill its promise as a catalyst for 
more precise, accessible, and compassionate 
rehabilitation care. 
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